[1] Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312-339. [2] Michno W, Wehrli P, Meier SR, et al. Chemical imaging of evolving amyloid plaque pathology and associated Aβ peptide aggregation in a transgenic mouse model of Alzheimer's disease[J]. J Neurochem, 2020, 152(5): 602-616. [3] Liu L, Ding L, Rovere M, et al. A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor[J]. J Cell Biol, 2019, 218(2): 644-663. [4] Tiwari S, Atluri V, Kaushik A, et al. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics[J]. Int J Nanomedicine, 2019, 14: 5541-5554. [5] Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease[J]. Nat Rev Neurol, 2015, 11(8): 457-470. [6] Miners JS, Schulz I, Love S. Differing associations between Aβ accumulation, hypoperfusion, blood-brain barrier dysfunction and loss of PDGFRB pericyte marker in the precuneus and parietal white matter in Alzheimer's disease[J]. J Cereb Blood Flow Metab, 2018, 38(1): 103-115. [7] Osgood D, Miller MC, Messier AA, et al. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier[J]. Neurobiol Aging, 2017, 57: 178-185. [8] Cecon E, Lhomme T, Maurice T, et al. Amyloid beta peptide is an endogenous negative allosteric modulator of leptin receptor[J]. Neuroendocrinology, 2021, 111(4): 370-387. [9] Wang X, Lopez OL, Sweet RA, et al. Genetic determinants of disease progression in Alzheimer's disease[J]. J Alzheimers Dis, 2015, 43(2): 649-655. [10] Salazar SV, Cox TO, Lee S, et al. Alzheimer's disease risk factor Pyk2 mediates amyloid-β-induced synaptic dysfunction and loss[J]. J Neurosci, 2019, 39(4): 758-772. [11] Li C, Götz J. Pyk2 is a novel Tau tyrosine kinase that is regulated by the tyrosine kinase Fyn[J]. J Alzheimers Dis, 2018, 64(1): 205-221. [12] Liu Z, Hao KM, Wang HY, et al. Histone deacetylase-6 modulates amyloid beta-induced cognitive dysfunction rats by regulating PTK2B[J]. Neuroreport, 2020, 31(10): 754-761. [13] Wang HY, Liu Z, Wang YL, et al. Nitric oxide modulates the cognitive function of beta-amyloid cognitive dysfunction rats by S-nitrosylation of histone deacetylase[J]. Acta Medica Mediterr, 2019, 35: 2751-2759. [14] Tiwari S, Atluri V, Kaushik A, et al. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics[J]. Int J Nanomedicine, 2019, 14: 5541-5554. [15] Jack Jr CR, Bennett DA, Blennow K, et al. NIA-AA research framework: Toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. [16] Das G, Ghosh S. Why microtubules should be considered as one of the supplementary targets for designing neurotherapeutics[J]. ACS Chem Neurosci, 2019, 10(3): 1118-1120. [17] Tiwari S, Atluri V, Kaushik A, et al. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics[J]. Int J Nanomedicine, 2019, 14: 5541-5554. [18] 蒋 方, 孙凤仙, 徐淑梅. β片层阻断肽H102对双转基因AD小鼠海马脑区APP代谢酶的影响[J]. 中国应用生理学杂志, 2017, 33(4): 299-303. [19] 周 翠, 李檬妤, 刘朝霞, 等. 艾灸对阿尔茨海默病模型大鼠血脑屏障结构与学习记忆功能的影响[J]. 中国应用生理学杂志, 2019, 35(5): 443-446. [20] Reiss AB, Arain HA, Stecker MM, et al. Amyloid toxicity in Alzheimer's disease[J]. Rev Neurosci, 2018, 29(6): 613-627. [21] Dassanayake AS, Kasturiratne A, Rajindrajith S, et al. Prevalence and risk factors for non-alcoholic fatty liver disease among adults in an urban Sri Lankan population[J]. J Gastroenterol Hepatol, 2009, 24(7): 1284-1288. [22] Qu Y, Dang S, Hou P. Gene methylation in gastric cancer[J]. Clin Chim Acta, 2013, 424: 53-65. [23] Revuelta-López E, Castellano J, Roura S, et al. Hypoxia induces metalloproteinase-9 activation and human vascular smooth muscle cell migration through low-density lipoprotein receptor-related protein 1-mediated Pyk2 phosphorylation[J]. Arterioscler Thromb Vasc Biol, 2013, 33(12): 2877-2887. [24] Salazar SV, Strittmatter SM. Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer's disease[J]. Biochem Biophys Res Commun, 2017, 483(4): 1143-1147. [25] Marques MA, Kulstad JJ, Savard CE, et al. Peripheral amyloid-beta levels regulate amyloid-beta clearance from the central nervous system[J]. J Alzheimers Dis, 2009, 16(2): 325-329. |