[1] Savourey G, Launay J, Besnard Y, et al. Control of erythropoiesis after high altitude acclimatization[J]. Eur J Appl Physiol, 2004, 93(1): 47-56. [2] Wilbe RL, Byrnes WC. Physical fitness and hematological changes during acclimatization to moderate altitude: a retrospective study[J]. High Alt Med Biol, 2007, 8(3): 213-224. [3] Makeshova AB, Levina AA, Iui M, et al. Characteristics of erythropoiesis regulation in population living at high altitude[J]. Ter Arkh, 2004, 76(11): 95-97. [4] Robach P, Recalcati S, Girelli D, et al. Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin[J]. Blood, 2009, 113(26): 6707-6715. [5] Robach P, Cairo G, Gelfi C, et al. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle[J]. Blood, 2007, 109(11): 4724-4731. [6] Cook JD, Boy E, Flowers CH, et al. The influence of high-altitude living on body iron[J]. Blood, 2005, 106(4): 1441-1446. [7] Coste O, Chaumet G, Van Beers P, et al. Hypobaric impact on clinical tolerance and 24-h patterns in iron metabolism markers and plasma proteins in men[J]. Chronobiol Int, 2011, 28(5): 434-445. [8] Rathnasamy G, Ling E, Kaur C. Iron and iron regulatory proteins in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species[J]. J Neurosci, 2011, 31(49): 17982-17995. [9] Duraisamy AJ, Bayen S, Saini S, et al. Changes in ghrelin, CCK, GLP-1, and peroxisome proliferator-activated receptors in a hypoxia-induced anorexia rat model[J]. Endokrynol Pol, 2015, 66(4): 334-341. [10] Munugalavadia V, Kapur R, Role of c-Kit and erythropoietin receptor in erythropoiesis[J]. Crit Rev Oncol Hematol, 2005, 54(1): 63-75. [11] 石晓天, 王 珏, 黄君富, 等. 高原藏区不同海拔血常规分析[J]. 国际检验医学杂志, 2015, 36(15): 2265-2266. [12] 格桑罗布, 达娃次仁, 古桑拉姆, 等. 一种新的高原红细胞增多症大鼠模型的建立[J]. 西藏医药, 2019, 40(5): 25-29. [13] 杨林鹏, 樊鹏程, 靳婉君, 等. 模拟高原缺氧环境对小鼠血常规参数检测结果的影响[J]. 解放军医药杂志, 2019, 31(5): 11-14. [14] Sun K, Zhang Y, D'Alessandro A, et al. Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia[J]. Nat Commun, 2016, 7(1): 12086-12086. [15] 邓雪艳, 李明娟, 吕茂霞, 等. 超声检测移居高原男性脾脏体积及血流量变化的对比研究[J]. 局解手术学杂志, 2015, 24(5): 525-527. [16] 白 萍, 赵泽文, 刘晓晴, 等. 高原红细胞增多症病因发病机制与红细胞膜特征[J]. 临床军医杂志, 2003, 31(6): 89-91. [17] Paulson RF, Ruan B, Hao S, et al. Stress erythropoiesis is a key inflammatory response[J]. Cells, 2020, 9(3): 634. [18] Pantopoulos, K, Porwal, SK, Tartakoff, AM, et al. Mechanisms of mammalian iron homeostasis[J]. Biochemistry, 2012, 51(29): 5705-5724. [19] 冯振龙, 赵 彤, 成 祥, 等. 模拟高原低压低氧环境对大鼠心脏结构和功能影响[J]. 中国应用生理学杂志, 2019, 35(2): 173-177. |