[1] Pinho CA, Tromm CB, Tavares AMV, et al. Effects of different physical training protocols on ventricular oxidative stress parameters in infarction-induced rats[J]. Life Sci, 2012, 90(13-14): 553-559. [2] Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia-reperfusion injury[J]. Free Radic Biol Med, 2008, 44(2): 193-201. [3] Quintanilha AT, Packer L, Vitamin E. Physical exercise and tissue oxidative damage[J]. Ciba Found Symp, 1983, 101: 56-69. [4] Bejma J, Ramires P, Ji LL. Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver[J]. Acta Physiol Scand, 2010, 169(4): 343-351. [5] Jackson MJ, Vasilaki A, McArdle A. Cellular mechanisms underlying oxidative stress in human exercise[J]. Free Radic Biol Med, 2016, 98: 13-17. [6] Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system[J]. Curr Cardiol Rev, 2018, 14(4): 290-300. [7] Ziolkowski W, Flis DJ, Halon M, et al. Prolonged swimming promotes cellular oxidative stress and p66Shc phosphorylation, but does not induce oxidative stress in mitochondria in the rat heart[J]. Free Radic Res, 2015, 49(1): 7-16. [8] Morita M, Matsuzaki H, Yamamoto T, et al. Epidermal growth factor receptor phosphorylates protein kinase Cδ at Tyr332 to form a trimeric complex with p66Shc in the H2O2-stimulated Cells[J]. J Biochem, 2008, 143(1): 31-8. [9] Wang P, Li CG, Qi ZT, et al. Acute exercise induced mitochondrial H2O2 production in mouse skeletal muscle: association with p(66Shc) and FOXO3a signaling and antioxidant enzymes[J]. Oxid Med Cell Longev, 2015, ID536456: 1-10. [10] Steinberg, SF. Structural basis of protein kinase C isoform function[J]. Physiol Rev, 2008, 88(4): 1341-1378. [11] Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome C and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis[J]. Cell, 2005, 122(2): 221-233. [12] Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals[J]. Nature, 1999, 402: 309-313. [13] 马治云. 急性力竭运动对大鼠心肌PKCα、δ和ε表达的影响[J]. 中国应用生理学杂志, 2016, 32(4): 333-335. [14] 刘 姣, 周 刚, 梅 雨, 等. 一次性力竭运动致大鼠骨骼肌氧化应激的机制[J]. 中国应用生理学杂志, 2020, 36(1): 17-22. [15] Lv P, Miao SB, Shu YN, et al. Phosphorylation of smooth muscle 22α facilitates angiotensin II-Induced ROS production via activation of the PKCδ-P47phox axis through release of PKCδ and actin dynamics and is associated with hypertrophy and hyperplasia of vascular smooth muscle cell[J]. Circ Res, 2012, 111(6): 697-707. [16] Nemoto S. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway[J]. Science, 2002, 295(5564): 2450-2452. [17] Francia P, Cosentino F, Schiavoni M, et al. p66Shc protein, oxidative stress, and cardiovascular complications of diabetes: the missing link[J]. J Mol Med (Berl), 2009, 87(9): 885-891. [18] Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production[J]. Physiol Rev, 2008, 88(4): 1243-1276. [19] Jackson MJ, McArdle A. Role of reactive oxygen species in age-related neuromuscular deficits[J]. J Physiol, 2016, 594(8): 1979-1988. |