[1] Tsunoda K, Kai Y, Kitano N, et al. Impact of physical activity on nonalcoholic steatohepatitis in people with nonalcoholic simple fatty liver: A prospective cohort study[J]. Prev Med, 2016, 88: 237-240. [2] Sozio MS, Liangpunsakul S, Crabb D. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis[J]. Semin Liver Dis, 2010, 30(4): 378-390. [3] Gimeno RE, Moller DE. FGF21-based pharmacotherapy--potential utility for metabolic disorders[J]. Trends Endocrinol Metab, 2014, 25(6): 303-311. [4] Hallsworth K, Thoma C, Hollingsworth KG, et al. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomized controlled trial[J]. Clin Sci (Lond), 2015, 129(12): 1097-1105. [5] Cassidy S, Thoma C, Hallsworth K, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: a randomised controlled trial[J]. Diabetologia, 2016, 59(1): 56-66. [6] 朱 磊, 路瑛丽, 冯连世, 等. 不同配方高脂饲料构建SD大鼠肥胖模型的实验研究[J]. 中国运动医学杂志, 2016, 35(7): 642-647. [7] Da RG, Crisp AH, de Oliveira MR, et al. Effect of high intensity interval and continuous swimming training on body mass adiposity level and serum parameters in high-fat diet fed rats[J]. Scientific World Journal, 2016, 1(2194120): 1-8. [8] Duggan GE, Hittel DS, Sensen CW, et al. Metabolomic response to exercise training in lean and diet-induced obese mice[J]. J Appl Physiol (1985), 2011, 110(5): 1311-1318. [9] 赵述强, 时洪举, 郑宁宁. 6周不同强度间歇性运动对肥胖大鼠体成分的影响[J]. 中国应用生理学杂志, 2019, 35(4): 326-330. [10] Wang N, Liu Y, Ma Y, et al. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice[J]. Life Sci, 2017, 191: 122-131. [11] Vella CA, Taylor K, Drummer D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults[J]. Eur J Sport Sci, 2017, 17(9): 1203-1211. [12] Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease[J]. J Clin Invest, 2017, 127(1): 1-4. [13] Selvaraju V, Bahu JR, Geetha T. Association of salivary C-reactive protein with the obesity measures and markers in children[J]. Diabetes Metab Syndr Obes, 2019, 12: 1239-1247. [14] Hodson L, Rosqvist F, Parry SA. The influence of dietary fatty acids on liver fat content and metabolism[J]. Proc Nutr Soc, 2020, 79(1): 30-41. [15] Nd AM. Non-alcoholic fatty liver disease, an overview[J]. Integr Med (Encinitas), 2019, 18(2): 42-49. [16] 卢漫漫, 陈家耀, 钮鸣宇, 等. 有氧运动对高脂饮食小鼠肝脏中CLK2蛋白表达的影响[J]. 中国应用生理学杂志, 2020, 36(1): 23-26. [17] Astorino TA, Schubert MM. Changes in fat oxidation in response to various regimes of high intensity interval training (HIIT)[J]. Eur J Appl Physiol, 2018, 118(1): 51-63. [18] 张 洁, 余红艳, 邸阜生. 高强度间歇运动对C57BL/6小鼠高脂饮食诱导肝脏脂肪沉积的影响[J]. 中华肝脏病杂志, 2019(4): 312-315. [19] Ogrodnik M, Miwa S, Tchkonia T, et al. Cellular senescence drives age-dependent hepatic steatosis[J]. Nat Commun, 2017, 13(8): 1-12. [20] Fletcher JA, Linden MA, Sheldon RD, et al. Fibroblast growth factor 21 andexercise-induced hepatic mitochondrial adaptations[J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310(10): G832-G843. |