[1] Kim K, Anderson EM, Scali ST, et al. Skeletal muscle mitochondrial dysfunction and oxidative stress in peripheral arterial disease: A unifying mechanism and therapeutic target[J]. Antioxidants(Basel), 2020, 9(12): E1304-1327. [2] Gasparini M, Sabovic M, Gregoric ID, et al. Increased fatigability of the gastrocnemius medialis muscle in individuals with intermittent claudication[J]. Eur J Vasc Endovasc Surg, 2012, 44(2): 170-176. [3] McDermott MM, Ferrucci L, Guralnik J, et al. Pathophysiological changes in calf muscle predict mobility loss at 2-year follow-up in men and women with peripheral arterial disease[J]. Circulation, 2009, 120(12): 1048-1055. [4] Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease[J]. J Biomed Sci, 2017, 24(1): 42-67. [5] 冯利霞, 葛长江, 吕树铮, 等. 细胞钙离子转运蛋白兰尼碱受体3与ApoE基因敲除小鼠动脉粥样硬化斑块形成的关系[J]. 中国病理生理杂志, 2012, 28(9): 1686-1689. [6] 郑 晔. RYR3、MiR-29b及MMP-9在小鼠动脉硬化斑块形成过程中的作用[D]. 天津医科大学, 2017. [7] Ewart M-A, Kennedy S, Macmillan D, et al. Altered vascular smooth muscle function in the ApoE knockout mouse during the progression of atherosclerosis[J]. Atherosclerosis, 2014, 234(1): 154-161. [8] Edwards JM, Neeb ZP, Alloosh MA, et al. Exercise training decreases store-operated Ca2+ entry associated with metabolic syndrome and coronary atherosclerosis[J]. Cardiovasc Res, 2010, 85(3): 631-640. [9] Lavier J, Beaumann M, Ménetrey S, et al. Supramaximal intensity hypoxic exercise and vascular function assessment in mice[J]. J Vis Exp, 2019(145): e58708-58717. [10] Van Assche T, Fransen P, Guns PJ, et al. Altered Ca2+ handling of smooth muscle cells in aorta of apolipoprotein E-deficient mice before development of atherosclerotic lesions[J]. Cell Calcium, 2007, 41(3): 295-302. [11] Munkvik M, Rehn TA, Slettaløkken G, et al. Training effects on skeletal muscle calcium handling in human chronic heart failure[J]. Med Sci Sports Exerc, 2010, 42(5): 847-855. [12] Denniss A, Dulhunty AF, Beard NA. Ryanodine receptor Ca2+ release channel post-translational modification: Central player in cardiac and skeletal muscle disease[J]. Int J Biochem Cell Biol, 2018, 101: 49-53. [13] Bellinger AM, Reiken S, Dura M, et al. Remodeling of ryanodine receptor complex causes “leaky” channels: a molecular mechanism for decreased exercise capacity[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 2198-2202. [14] Bueno CR, Ferreira J C B, Pereira MG, et al. Aerobic exercise training improves skeletal muscle function and Ca2+ handling-related protein expression in sympathetic hyperactivity-induced heart failure[J]. J Appl Physiol(1985), 2010, 109(3): 702-709. [15] Mänttiri S, Anttila K, Kaakinen M, et al. Effects of low-intensity training on dihydropyridine and ryanodine receptor content in skeletal muscle of mouse[J]. J Physiol Biochem, 2006, 62(4): 293-301. [16] Fodor J, Gomba-Tóth A, Oláh T, et al. Alteration of sarcoplasmic reticulum Ca2+ ATPase expression in lower limb ischemia caused by atherosclerosis obliterans[J]. Physiol Int, 2017, 104(2): 183-192. [17] 丁海丽, 黄增浩, 任在方, 等. 针刺对大鼠运动性骨骼肌损伤内质网应激的干预作用及机制[J]. 中国应用生理学杂志, 2021, 37(4): 359-364. [18] Xu H, Van Remmen H. The SarcoEndoplasmic Reticulum Calcium ATPase(SERCA) pump: a potential target for intervention in aging and skeletal muscle pathologies[J]. Skeletal Muscle, 2021, 11(1): 25. [19] Melo SFS, Barauna VG, Neves VJ, et al. Exercise training restores the cardiac microRNA-1 and -214 levels regulating Ca2+ handling after myocardial infarction[J]. BMC Cardiovasc Disord, 2015, 15: 166-174. [20] Morissette MP, Susser SE, Stammers AN, et al. Exercise-induced increases in the expression and activity of cardiac sarcoplasmic reticulum calcium ATPase 2 is attenuated in AMPKα2 kinase-dead mice[J]. Can J Physiol Pharmacol, 2019, 97(8): 786-795. |