[1] Zeman MK, Cimprich KA. Causes and consequences of replication stress[J]. Nat Cell Biol, 2014, 16(1): 2-9. [2] Hashimoto Y, Tanaka H. Mre11 exonuclease activity promotes irreversible mitotic progression under replication stress[J]. Life Sci Alliance, 2022, 5(6): 24-29. [3] de Punder K, Heim C, Wadhwa PD, et al. Stress and immunosenescence: The role of telomerase[J]. Psychoneuroendocrinology, 2019, 101: 87-100. [4] Barron H, Hafizi S, Andreazza AC, et al. Neuroinflammation and oxidative stress in psychosis and psychosis risk[J]. Int J Mol Sci, 2017, 18(3): 651-653. [5] Barron H, Hafizi S, Mizrahi R. Towards an integrated view of early molecular changes underlying vulnerability to social stress in psychosis[J]. Mod Trends Pharmacopsychiatry, 2017, 31(1): 96-106. [6] de Quervain D, Schwabe L, Roozendaal B. Stress, glucocorticoids and memory: implications for treating fear-related disorders[J]. Nat Rev Neurosci, 2017, 18(1): 7-19. [7] Vitousek MN, Taff CC, Ryan TA, et al. Stress resilience and the dynamic regulation of glucocorticoids[J]. Integr Comp Biol, 2019, 59(2): 251-263. [8] Kinlein SA, Phillips DJ, Keller CR, et al. Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function[J]. Psychoneuroendocrinology, 2019, 102: 248-255. [9] Joëls M, Karst H, Sarabdjitsingh RA. The stressed brain of humans and rodents[J]. Acta Physiol (Oxf), 2018, 223(2): e13066. [10] Nishi M. Effects of early-life stress on the brain and behaviors: Implications of early maternal separation in rodents[J]. Int J Mol Sci, 2020, 21(19): 246-252. [11] Wiatrak B, Kubis-Kubiak A, Piwowar A, et al. PC12 cell line: Cell types, coating of culture vessels, differentiation and other culture conditions[J]. Cells, 2020, 9(4): 958-961. [12] Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges[J]. Anal Biochem, 2017, 524: 13-30. [13] Attaluri S, Arora M, Madhu LN, et al. Oral nano-curcumin in a model of chronic gulf war illness alleviates brain dysfunction with modulation of oxidative stress, mitochondrial function, neuroinflammation, neurogenesis, and gene expression[J]. Aging Dis, 2022, 13(2): 583-613. [14] Mansuroĝlu B, Derman S, Yaba A, et al. Protective effect of chemically modified SOD on lipid peroxidation and antioxidant status in diabetic rats[J]. Int J Biol Macromol, 2015, 72(6): 79-87. [15] Li J, Zhang Y, Zhang J, et al. Oxidative stress and its related factors in latent autoimmune diabetes in adults[J]. Biomed Res Int, 2021, 2021: 5676363. [16] Oldham WM, Clish CB, Yang Y, et al. Hypoxia-mediated increases in l-2-hydroxyglutarate coordinate the metabolic response to reductive stress[J]. Cell Metab, 2015, 22(2): 291-303. [17] Li M, Liu C, Zhang W, et al. An NADH-selective and sensitive fluorescence probe to evaluate living cell hypoxic stress[J]. J Mater Chem B, 2021, 9(46): 9547-9552. [18] Handy DE, Loscalzo J. Responses to reductive stress in the cardiovascular system[J]. Free Radic Biol Med, 2017, 109: 114-124. [19] Bradshaw PC. Cytoplasmic and mitochondrial NADPH-coupled redox systems in the regulation of aging[J]. Nutrients, 2019, 11(3): 22-26. [20] Sarsour EH, Kumar MG, Chaudhuri L, et al. Redox control of the cell cycle in health and disease[J]. Antioxid Redox Signal, 2009, 11(12): 2985-3011. [21] Clanton TL. Hypoxia-induced reactive oxygen species formation in skeletal muscle[J]. J Appl Physiol, (1985) 2007, 102(6): 2379-2388. [22] Jurisic V, Radenkovic S, Konjevic G. The actual role of LDH as tumor marker, biochemical and clinical aspects[J]. Adv Exp Med Biol, 2015, 867(3): 115-124. [23] Wang C, Wang XR, Song DD, et al. The establishment of rat model in myocardial ischemia with psychological stress[J]. Ann Transl Med, 2020, 8(6): 322. |