[1] Talbot K, Wang HY. The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer's disease[J]. Alzheimers Dement, 2014, 10(1 Suppl):S12-25. [2] Heppner FL, Ransohoff RM, Becher B. Immune attack:the role of inflammation in Alzheimer disease[J]. Nat Rev Neu-rosci, 2015, 16(6):358-372. [3] Fraller DB. State of the science:use of biomarkers and imag-ing in diagnosis and management of Alzheimer disease[J]. J Neurosci Nurs, 2013, 45(2):63-70. [4] Janson J, Laedtke T, Parisi JE, et al. Increased risk of type 2 diabetes in Alzheimer disease[J]. Diabetes, 2004, 53(2):474-481. [5] Haan MN. Therapy insight:type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease[J]. Nat Clin Pract Neurol, 2006, 2(3):159-166. [6] Gault VA, Porter WD, Flatt PR, et al. Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plas-ticity in mice fed a high-fat diet.[J]. Int J Obes(Lond), 2010, 34(8):1341-1344. [7] Mc Clean PL, Gault VA, Harriott P, et al. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain:a link between diabetes and Alzheimer's disease[J]. Eur J Pharmacol, 2010, 630(1-3):158-162. [8] Calsolaro V, Edison P. Novel GLP-1(Glucagon-Like Pep-tide-1) analogues and insulin in the treatment for Alzheimer's disease and other neurodegenerative diseases[J]. CNS Drugs, 2015, 29(12):1023-1039. [9] Duffy AM, Hølscher C. The incretin analogue D-Ala2GIP re-duces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer's disease[J]. Neuro-science, 2013, 228:294-300. [10] Yu YW, Hsieh TH, Chen KY, et al. Glucose-dependent in-sulinotropic polypeptide ameliorates mild traumatic brain in-jury-induced cognitive and sensorimotor deficits and neuroin-flammation in rats[J]. J Neurotrauma, 2016. [11] Finan B, Ma T, Ottaway N, et al. Unimolecular dual in-cretins maximize metabolic benefits in rodents, monkeys, and humans.[J]. Sci Transl Med, 2013, 5(209):209ra151. [12] 李清山, 杨威, 潘艳芳, 等. 脑源性神经营养因子拮抗β淀粉样蛋白所致大鼠在体海马长时程增强的伤害[J]. 中国应用生理学杂志, 2012, 28(5):425-429. [13] 郝明, 仝嘉庆, 张军, 等. 雷帕霉素对淀粉样β蛋白所致大鼠工作记忆和突触可塑性损伤的作用观察[J]. 中国应用生理学杂志, 2016, 32(1):18-21. [14] Obregon D, Hou H, Deng J, et al. Soluble amyloid precur-sor protein-alpha modulates beta-secretase activity and amy-loid-beta generation[J]. Nat Commun, 2012, 3:777. [15] Wang XH, Li L, Holscher C, et al. Val8-glucagon-like peptide-1 protects against Abeta1-40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats[J]. Neuroscience, 2010, 170(4):1239-1248. [16] Tong JQ, Zhang J, Hao M, et al. Leptin attenuates the detrimental effects of beta-amyloid on spatial memory and hip-pocampal later-phase long term potentiation in rats[J]. Horm Behav, 2015, 73:125-130. [17] Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents[J]. Nat Med, 2015, 21(1):27-36. [18] Kastin A, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses[J]. Int J Obes Relat Metab Disord, 2003, 27(3):313-318. [19] McClean PL, Hølscher C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer's disease[J]. Neuropharma-cology, 2014, 86:241-258. |