[1] Hardy J. The amyloid hypothesis for Alzheimer's disease:a critical reappraisal[J]. J Neurochem, 2009, 110(4):1129-1134. [2] Graeber MB, Streit WJ. Microglia:biology and pathology[J]. Acta Neuropathol, 2010, 119(1):89-105. [3] Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration[J]. Neurobiol Aging, 2005, 26(3):349-354. [4] Eikelenboom P, Rozemuller AJ, Hoozemans JJ, et al. Neuroinflammation and Alzheimer disease:clinical and therapeutic implications[J]. Alzheimer Dis Assoc Disord, 2000, 14(Suppl 1):S54-S61. [5] Alvarez A, Cacabelos R, Sanpedro C, et al. Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease[J]. Neurobiol Aging, 2007, 28(4):533-536. [6] Matsuoka Y, Picciano M, Malester B, et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer's disease[J]. Am J Pathol, 2001, 158(4):1345-1354. [7] Unsicker K, Strelau J. Functions of transforming growth factor-beta isoforms in the nervous system cues based on localization and experimental in vitro and in vivo evidence[J]. Eur J Biochem, 2000, 267(24):6972-6975. [8] Komuta Y, Teng X, Yanagisawa H, et al. Expression of transforming growth factor-beta receptors in meningeal fibroblasts of the injured mouse brain[J]. Cell Mol Neurobiol, 2010, 30(1):101-111. [9] 方小霞, 陈肖, 孙高林, 等. TGF-β1抑制Aβ1-42诱导的海马神经炎症和神经元凋亡[J]. 南通大学学报(医学版), 2015, 35(5):343-347. [10] Jana M, Liu X, Koka S, et al. Ligation of CD40 stimulates the induction of nitric-oxide synthase in microglial cells[J]. J Biol Chem, 2001, 276(48):44527-44533. [11] 张国霞, 周爱玲, 张贵萍, 等. 大鼠海马神经元TLR4介导的MyD88依赖途径在神经炎症中的作用[J]. 中国应用生理学杂志, 2013, 29(1):42-46. [12] Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice[J]. Brain, 2005, 128(Pt 6):1442-1453. [13] 毕燕华, 宋婷婷, 陈学群, 等. 神经肽CRH对原代大鼠皮层小胶质细胞NO、TNF-α和IL6释放的影响[J]. 中国应用生理学杂志, 2013, 29(4):323-325. [14] Sonntag WE, Carter CS, Ikeno Y, et al. Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span[J]. Endocrinology, 2005, 146(7):2920-2932. [15] O'Connor JC, McCusker RH, Strle K, et al. Regulation of IGF-I function by proinflammatory cytokines:at the interface of immunology and endocrinology[J]. Cell Immunol, 2008, 252(1-2):91-110. [16] Dantzer R, O'Connor J, Freund G, et al. From inflammation to sickness and depression:when the immune system subjugates the brain[J]. Nat Rev Neurosci, 2008, 9(1):46-56. [17] Zhu Y, Chen X, Liu Z, et al. Interleukin-10 protection against lipopolysaccharide-induced neuro-inflammation and neurotoxicity in ventral mesencephalic cultures[J]. Int J Mol Sci, 2015, 17(1):25-39. [18] Caraci F, Spampinato S, Sortino MA, et al. Dysfunction of TGF-beta1 signaling in Alzheimer's disease:perspectives for neuroprotection[J]. Cell Tissue Res, 2012, 347(1):291-301. [19] Vivien D, Ali C. Transforming growth factor-beta signaling in brain disorders[J]. Cytokine Growth Factor Rev, 2006, 17(1-2):121-128. |