[1] Chiu WA, Jinot J, Scott CS, et al. Human health effects of trichloroethylene: key findings and scientific issues[J] . Environ Health Perspect, 2013, 121(3): 303-311. [2] Guha, N, Loomis D, Grosse Y, et al. Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites[J] . Lancet Oncol, 2012, 13(12): 1192-1193. [3] Vecoli C, Pulignani S, Foffa I, et al. Congenital heart disease: the crossroads of genetics, epigenetics and environment[J] . Curr Genomics, 2014. 15(5): 390-399. [4] Goldberg SJ, Lebowitz MD, Graver EJ, et al. An association of human congenital cardiac malformations and drinking water contaminants[J] . J Am Coll Cardiol, 1990, 16(1): 155-164. [5] Yauck JS, Malloy ME, Blair K, et al. Proximity of residence to trichloroethylene-emitting sites and increased risk of offspring congenital heart defects among older women[J] . Birth Defects Res A Clin Mol Teratol, 2004, 70(10): 808-814. [6] Jiang Y, Wang D, Zhang G, et al. Disruption of cardiogenesis in human embryonic stem cells exposed to trichloroethylene[J] . Environ Toxicol, 2016, 31(11): 1372-1380. [7] Fan Y, Ho BX, Pang JKS, et al. Wnt/β-catenin-mediated signaling re-activates proliferation of matured cardiomyocytes[J] . Stem Cell Res Ther, 2018, 9(1): 338. [8] Soemedi R, Wilson IJ, Bentham J, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J] . Am J Hum Genet, 2012, 91(3): 489-501. [9] Zhang H, Yao Y, Chen Y, et al. Crosstalk between AhR and wnt/beta-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos[J] . Toxicology, 2016, 355-356: 31-38. [10] Caldwell, PT, Thorne PA, Johnson PD, et al. Trichloroethylene disrupts cardiac gene expression and calcium homeostasis in rat myocytes[J] . Toxicol Sci, 2008, 104(1): 135-143. [11] Collier JM, Selmin O, Johnson PD, et al. Trichloroethylene effects on gene expression during cardiac development[J] . Birth Defects Res A Clin Mol Teratol, 2003, 67(7): 488-495. [12] Drake VJ1, Koprowski SL, Hu N, et al. Cardiogenic effects of trichloroethylene and trichloroacetic acid following exposure during heart specification of avian development[J] . Lough J Toxicol Sci, 2006, 94(1): 153-162. [13] Bournele D, Beis D. Zebrafish models of cardiovascular disease[J] . Heart Fail Rev, 2016, 21(6): 803-813. [14] Wirbisky SE, Damayanti NP, Mahapatra CT, et al. Mitochondrial dysfunction, disruption of F-Actin polymerization, and transcriptomic alterations in zebrafish larvae exposed to trichloroethylene[J] . Chem Res Toxicol, 2016, 29(2): 169-179. [15] Rufer ES1, Hacker TA, Flentke GR, et al. Altered cardiac function and ventricular septal defect in avian embryos exposed to low-dose trichloroethylene[J] . Toxicol Sci, 2010, 113(2): 444-452. [16] Klaus A, Birchmeier W. Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp-and Wnt/beta-catenin signaling[J] . Pediatr Cardiol, 2009, 30(5): 609-616. [17] Akazawa H, Komuro I. Cardiac transcription factor Csx/ NKX2.5; its role in cardiac development and disease[J] . Pharmacol Ther, 2005, 107(2): 252-268. [18] 丁建东, 李开如, 张晓黎, 等. 转录因子NXK2.5基因突变参与先天性心脏病相关性的初步研究[J] . 中华医学杂志, 2009, 89(16): 1114-1116. [19] van Gijn ME1, Daemen MJ, Smits JF, et al. The Wnt-frizzled cascade in cardiovascular disease[J] . Cardiovasc Res, 2002, 55 (1): 16-24. |