[1] Goncalves NP, Vaegter CB, Andersen H, et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy[J]. Nat Rev Neurol, 2017, 13(3):135-147. [2] Pop-Busui R, Lu J, Lopes N, et al. Prevalence of dia-betic peripheral neuropathy and relation to glycemic con-trol therapies at baseline in the BARI 2D cohort[J]. J Peripher Nerv Syst, 2009, 14(1):1-13. [3] Abbott CA, Malik RA, Van Ross ER, et al. Prevalence and characteristics of painful diabetic neuropathy in a large community-based diabetic population in the U. K[J]. Diabetes Care, 2011, 34(10):2220-2224. [4] Daousi C, Macfarlane IA, Woodward A, et al. Chronic painful peripheral neuropathy in an urban community:a controlled comparison of people with and without diabetes[J]. Diabe Med, 2004, 21(9):976-982. [5] Bouhassira D, Letanoux M, Hartemann A. Chronic pain with neuropathic characteristics in diabetic patients:a French cross-sectional study[J]. Plos One, 2013, 8(9):e74195. [6] Gonzalez CD, Lee MS, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes melli-tus[J]. Autophagy, 2011, 7(1):2-11. [7] 贺俭, 王汉兵, 赵伟成, 等. 脊髓自噬功能的激活在大鼠糖尿病神经病理性疼痛中的作用[J]. 中华医学杂志, 2015, 95(14):1074-1077. [8] Callaghan BC, Little AA, Feldman EL, et al. Enhanced glucose control for preventing and treating diabetic neu-ropathy[J]. Cochrane Database Syst Rev, 2012, (6):CD007543. [9] Callaghan BC, Hur J, Feldman EL. Diabetic neuropa-thy:one disease or two[J]? Curr Opin Neurol, 2012, (25):536-541. [10] 马益梅, 李传达, 朱雅冰, 等. RvD1对大鼠2型糖尿病神经病理性痛的作用及机制研究[J]. 中国应用生理学杂志, 2017, 33(3):277-281. [11] Srinivasan K, Viswanad B, Asrat L, et al. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat:a model for type 2diabetes and pharmacological screening[J]. Pharmacol Res, 2005, 52(4):313-320. [12] Muoio DM, Newgard CB. Mechanisms of disease:molec-ular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2diabetes[J]. Nat Rev Mol Cell Biol, 2008, 9(3):193-205. [13] Dang JK, Wu Y, Cao H, et al. Establishment of a rat model of type Ⅱ diabetic neuropathic pain[J]. Pain Med, 2014, 15(4):637-646. [14] Muniyappa R, Lee S, Chen H, et al. Current approa-ches for assessing insulin sensitivity and resistance in vi-vo:advantages, limitations, and appropriate usage[J]. Am J Physiol Endocrinol Metab, 2008, 294(1):E15-26. [15] Zhao BQ, Wang S, Kim HY, et al. Role of matrix met-alloproteinases in delayed cortical responses after stroke[J]. Nat Med, 2006, 12(4):441-445. [16] Callaghan B, Feldman E. The metabolic syndrome and neuropathy:therapeutic challenges and opportunities[J]. Ann Neurol, 2013, 74(3):397-403. [17] Committee Canadian Diabetes Association Clinical Prac-tice Guidelines Expert, Goldenberg R, Punthakee Z. Definition, classification and diagnosis of diabetes, predi-abetes and metabolic syndrome[J]. Can J Diabetes, 2013, 37(Suppl 1):S8-11. [18] Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182):1069-1075. [19] Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiol Rev, 2010, 90(4):1383-435. [20] Rabinowitz Jd, White E. Autophagy and metabolism[J]. Science, 2010,(330):1344-1348. [21] He C, Bassik Mc, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis[J]. Nature, 2012,(481):511-515. [22] Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway[J]. Nat Chem Biol, 2008, 4(5):295-305. [23] Spencer B, Potkar R, Trejo M, et al. Beclin 1gene transfer activates autophagy and ameliorates the neurode-generative pathology in alpha-synuclein models of Parkin-son's and Lewy body diseases[J]. J Neurosci, 2009, 29(43):13578-13588. [24] Levine B, Mizushima N, Virgin HW. Autophagy in im-munity and inflammation[J]. Nature, 2011, 469(7330):323-335. [25] Choi KS, Autophagy and cancer[J]. Exp Mol Med, 2012, 44:109-120. [26] Berliocchi L, Russo R, Maiaru M, et al. Autophagy im-pairment in a mouse model of neuropathic pain[J]. Mol Pain, 2011, 7:83. [27] Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-Ⅱ formation[J]. J Cell Sci, 2004, 117(Pt 13):2805-2812. [28] Mizushima N, Kuma A, Kobayashi Y, et al. Mouse Apg16L, a novel WD-repeat protein, targets to the auto-phagic isolation membrane with the Apg12-Apg5 conju-gate[J]. J Cell Sci, 2003, 116(Pt 9):1679-1688. [29] Mizushima N, Yamamoto A, Matsui M, et al. In vivo a-nalysis of autophagy in response to nutrient starvation u-sing transgenic mice expressing a fluorescent autophago-some marker[J]. Mol Biol Cell, 2004, 15(3):1101-1111. [30] Mizushima N, Yoshimori T, Levine B. Methods in mam-malian autophagy research[J]. Cell, 2010, 140(3):313-326. [31] Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regu-late autophagy at different stages[J]. Nat Cell Biol, 2009, 11(4):385-U69. [32] Pattingre S, Espert L, Biard-Piechaczyk M, et al. Regu-lation of macroautophagy by mTOR and Beclin 1comple-xes[J]. Biochimie, 2008, 90(2):313-323. [33] Komatsu M, Waguri S, Koike M, et al. Homeostatic lev-els of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell, 2007, 131(6):1149-1163. [34] Ma ZC, Han Q, Wang XL, et al. Galectin-3inhibition is associated with neuropathic pain attenuation after periph-eral nerve injury[J]. Plos One, 2016, 11(2). [35] Zhang E, Yi MH, Ko Y, et al. Expression of LC3 and Beclin 1in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain[J]. Brain Res, 2013, 1519:31-39. |