[1] |
Jackson MJ, Vasilaki A, McArdle A. Cellular mechanisms underlying oxidative stress in human exercise[J]. Free Radic Biol Med, 2016, 98: 13-17.
|
[2] |
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiol Rev, 2007, 87(1): 245-313.
|
[3] |
Jackson MJ. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function[J]? Free Radic Biol Med, 2008, 44(2): 132-141.
|
[4] |
Loureiro AC, do Rêgo-Monteiro IC, Louzada RA, et al. Differential expression of NADPH oxidases depends on skeletal muscle fiber type in rats[J]. Oxid Med Cell Longev, 2016, 2016: 6738701.doi: 10.1155/2016/6738701.
|
[5] |
Díaz-Vegas A, Campos CA, Contreras-Ferrat A, et al. ROS production via P2Y1-PKC-NOX2 is triggered by extracellular ATP after electrical stimulation of skeletal muscle cells[J]. PLoS One, 2015, 10(6): 0129882. doi: 10.1371/journal.pone.0129882.
|
[6] |
陈丽娜, 周 刚, 吴 乐, 等. NADPH氧化酶抑制剂apocynin对力竭运动大鼠运动性蛋白尿的影响[J]. 中国应用生理学杂志, 2016, 32(2): 116-120.
|
[7] |
Zuo L, Clanton TL. Detection of reactive oxygen and nitrogen species in tissues using redox-sensitive fluorescent probes [J]. Methods Enzymol, 2002, 352: 307-325.
|
[8] |
Hidalgo C, Sánchez G, Barrientos G, et al. Atransverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1S -glutathionylation[J]. J Biol Chem, 2006, 281(36): 26473-26482.
|
[9] |
Lambeth JD. NOX enzymes and the biology of reactive oxygen[J]. Nat Rev Immunol, 2004, 4(3): 181-189.
|
[10] |
Henriquez-Olguin C, Diaz-Vegas A, Utreras-Mendoza Y, et al. NOX2 inhibition impairs early muscle gene expression induced by a single exercise bout[J]. Front Physiol, 2016, 7: 282.
|
[11] |
丁 勇, 王建月, 许思毛. PKCδ-NOX途径介导一次性力竭运动大鼠心肌过氧化损伤的研究[J]. 北京体育大学学报, 2016, 39(3): 73-80.
|
[12] |
El-Benna J, Dang PM, Gougerot-Pocidalo MA, et al. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases[J]. Exp Mol Med, 2009, 41(4): 217-225.
|
[13] |
马治云.急性力竭运动对大鼠心肌PKCα、δ和ε表达的影响[J]. 中国应用生理学杂志, 2016, 32(4): 333-335.
|
[14] |
Ferreira1 LF, Laitano O. Regulation of NADPH oxidases in skeletal muscle[J]. Free Radic Biol Med, 2016, 98: 18-28.
|
[15] |
于 婷, 辛 青, 许 飞, 等. 高糖通过Nox4型NADPH氧化酶影响施旺细胞凋亡的机制研究[J]. 中国应用生理学杂志, 2019, 35(2): 130-134.
|
[16] |
Hancock M, Hafstad AD, Nabeebaccus AA, et al. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise[J]. Elife, 2018, 7: pii: e41044.
|
[17] |
Xu H, Goettsch C, Xia N, et al. Differential roles of PKCalpha and PKCepsilon in controlling the gene expression of Nox4 in human endothelial cells[J]. Free Radic Biol Med, 2008, 44(8): 1656-1667.
|
[18] |
Thallas-Bonke V, Jha JC, Gray SP, et al. Nox-4 deletion reduces oxidative stress and injury by PKC-α-associated mechanisms in diabetic nephropathy[J].Physiol Rep, 2014, 2(11): pii: e12192.
|
[19] |
Chen F, Haigh S, Barman S, et al. From form to function: the role of Nox4 in the cardiovascular system[J]. Front Physiol, 2012, 3: 412.
|
[20] |
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease[J]. Physiol Rev, 2007, 87(1): 315-424.
|