[1] Petridis AK, Kamp MA, Cornelius JF, et al. Aneurysmal subarachnoid hemorrhage[J]. Dtsch Arztebl Int, 2017, 114(13): 226-236. [2] 黎 涛. 蛛网膜下腔出血后早期脑损伤中血-脑屏障破坏的研究进展[J]. 中风与神经疾病杂志, 2016, 33(8): 755-757. [3] 江顺婷, 何伟文. 动脉瘤性蛛网膜下腔出血后下丘脑-垂体功能减退的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2015, 5(1): 50-53. [4] Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage[J]. Curr Neurol Neurosci Rep, 2019, 19(10): 78. [5] Mazzeo AT, Guaraldi F, Filippini C, et al. Activation of pituitary axis according to underlying critical illness and its effect on outcome[J]. J Crit Care, 2019, 6(54): 22-29. [6] Ma J, YangX, Yin H. Effect of thyroid hormone replacement therapy on cognition in long-term survivors of aneurysmal subarachnoid hemorrhage[J]. Exp Ther Med, 2015, 10(1): 369-373. [7] 马 骏, 尹 浩, 刘窗溪, 等. 动脉瘤性蛛网膜下腔出血患者血清甲状腺激素水平与认知关系的临床研究[J]. 中华神经外科杂志, 2015, 31(1): 38-39. [8] 贾天明, 赵闪闪, 张晓莉, 等. 左甲状腺素对缺氧缺血性脑损伤新生大鼠脑组织缺氧诱导因子-1α表达的调节及机制[J]. 中华实用儿科临床杂志, 2013, 28(24): 1871-1874. [9] Karaca Z, Hacioglu A, Kelestimur F. Neuroendocrine changes after aneurysmal subarachnoidhaemorrhage[J]. Pituitary, 2019, 22(3): 305-321. [10] 陈香梅, 熊艳蕾, 龚 辉, 等. 低氧下HIF-1α对小鼠性激素及睾丸生精细胞凋亡的影响[J]. 中国应用生理学杂志, 2013, 29(4): 371-375. [11] 洪 欣, 董宏彬, 杜宏伟, 等. 低氧及低氧预处理时心肌细胞HIF-1α与凋亡相关蛋白表达的变化[J]. 中国应用生理学杂志, 2005, 21(4): 423-426. [12] 赵云霞, 牛国辉, 王 军, 等. 缺氧缺血性脑损伤新生大鼠早期缺氧诱导因子-1α表达的意义[J]. 中华实用儿科临床杂志, 2017, 32(17): 1321-1325. [13] Jaiswal AK, Yadav S, Sahu RN, et al. An evaluation of neuroendocrine dysfunction following acute aneurysmal subarachnoid hemorrhage: A prospective study[J]. Asian J Neurosurg, 2017, 12(1): 34-36. [14] Fitzpatrick SF. Immunometabolism and Sepsis: A role for HIF[J] ? Front Mol Biosci, 2019, 6(6): 85. [15] Li J, Shen J, Wang Z, Xu H, et al. ELTD1 facilitates glioma proliferation, migration and invasion by activating JAK/STAT3/HIF-1α signaling axis[J]. Sci Rep, 2019, 9(1): 13904. [16] Xue L, Huang J, Zhang T, et al. PTEN inhibition enhances angiogenesis in an in vitro model of ischemic injury by promoting Akt phosphorylation and subsequent hypoxia inducible factor-1α upregulation[J]. Metab Brain Dis, 2018, 33(5): 1679-1688. [17] Liang Z, Chi YJ, Lin GQ, et al. MiRNA-26a promotes angiogenesis in a rat model of cerebral infarction via PI3K/AKT and MAPK/ERK pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(11): 3485-3492. |