[1] |
Chen JQ,Szodoray P,Zeher M. Toll-like receptor pathways in autoimmune diseases[J]. Clin Rev Allergy Immunol, 2016, 50(1): 1-17.
|
[2] |
Hamerman JA, Pottle J, Ni M, et al. Negative regulation of TLR signaling in myeloid cells--implications for autoimmune diseases[J]. Immunol Rev, 2016, 269(1): 212-227.
|
[3] |
周 新. 大球盖菇多糖对过度运动大鼠脾脏免疫机能及p-p38MAPK蛋白表达的影响[J]. 扬州大学学报(农业与生命科学版), 2019, 40(6): 71-75.
|
[4] |
Yuan X, Xu S, Huang H, et al. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model[J]. Scand J Med Sci Sport, 2018, 28(5): 1541-1551
|
[5] |
Xu XY, Meng X, Li S, et al. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives[J]. Nutrients, 2018, 10(10): 1553.
|
[6] |
周海涛, 曹建民, 米生权, 等. 姜黄素对运动性肾缺血再灌注损伤大鼠肾组织中炎症因子蛋白及基因表达的影响[J]. 天然产物研究与开发, 2018, 30(10): 1687-1694.
|
[7] |
Wang J, Cao JM, Huang AL, et al. Effect of haematococcus pluvialis on exercise-related renal ischemia-reperfusion injury and ECM expression[J]. Int J Clin Exp Med, 2016, 9(4): 7127-7136.
|
[8] |
李 丽, 常 波. 过度训练动物模型制备的研究进展[J]. 沈阳体育学院学报, 2011, 30(5): 77-82.
|
[9] |
Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptors-from microbial recognition to autoimmunity: a comprehensive review[J]. Autoimmun Rev, 2016, 15(1): 1-8.
|
[10] |
蒋 伟, 张 弦, 周爱玲. TLR4/P38/JNK信号通路在海马神经元凋亡中的作用[J]. 中国应用生理学杂志, 2016, 32(6): 571-576.
|
[11] |
郑妩媚, 初海平, 王 燕, 等. 力竭运动后不同时相大鼠心肌p-p38MAPK、NF-κB、COX-2表达的动态变化[J].中国应用生理学杂志, 2016, 32(1): 88-91.
|
[12] |
Sun LF, An DQ, Niyazi GL, et al. Effects of Tianxiangdan Granule treatment on atherosclerosis via NF-κB and p38 MAPK signaling pathways[J]. Mol Med Rep, 2018, 17(1): 1642-1650.
|
[13] |
Zhang Y, Liu Z, Wu J, et al. New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity[J]. Eur J Med Chem, 2018, 148: 291-305.
|
[14] |
Guimares MR, Leite FR, Spolidorio LC, et al. Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK[J]. Arch Oral Biol, 2013, 58(10): 1309-1317.
|
[15] |
Song WB, Wang YY,Meng FS, et al. Curcumin protects intestinal mucosal barrier function of rat enteritis via activation of MKP-1 and attenuation of p38 and NF-κB activation[J]. PLoS One, 2010, 5(9): e12969.
|
[16] |
Yu S, Wang X, He X, et al. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway[J]. Cell Stress Chaperones, 2016, 21(4): 697-705.
|
[17] |
Ni H, Jin W, Zhu T, et al. Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats[J]. J Spinal Cord Med, 2015, 38(2): 199-206.
|
[18] |
Zhou Y, Zhang T, Wang X, et al. Curcumin modulates macrophage polarization through the inhibition of the toll-like receptor 4 expression and its signaling pathways[J]. Cell Physiol Biochem, 2015, 36(2): 631-641.
|
[19] |
Banchereau J, Pascual V, O' Garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines[J]. Nat Immunol, 2012, 13(10): 925-931.
|
[20] |
Wang J, Kang YX, Pan W, et al. Enhancement of anti-inflammatory activity of curcumin using phosphatidylserine-containing nanoparticles in cultured macrophages[J]. Int J Mol Sci, 2016, 17(6): 969.
|
[21] |
Larmonier CB, Uno JK, Lee KM, et al. Limited effects of dietary curcumin on Th-1 driven colitis in IL-10 deficient mice suggest an IL-10-dependent mechanism of protection[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295(5): G1079-G1091.
|