[1] |
蒋 易, 燕艳丽, 白建文. 抗细胞趋化因子CCL21单克隆抗体处理对小鼠急性心肌梗死后左心室重构及心功能的影响[J]. 中国应用生理学杂志, 2018, 34(3): 197-200.
|
[2] |
Liao J, Yang X, Lin Q, et al. Inhibition of the Ubiquitin-activating enzyme UBA1 suppresses diet-induced atherosclerosis in apolipoprotein E-knockout mice [J]. J Immunol Res, 2020, 2020: 7812709.
|
[3] |
Ranjbar K, Nazem F, Nazari A. Effect of exercise training and L-arginine on oxidative stress and left ventricular function in the post-ischemic failing rat heart [J]. Cardiovasc Toxicol, 2016, 16(2): 122-129.
|
[4] |
Ding S, Liu D, Wang L, et al. Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway [J]. J Pharmacol Exp Ther, 2020, 372(1): 128-135.
|
[5] |
Chan SH, Hung CH, Shih JY, et al. Exercise intervention attenuates hyperhomocysteinemia-induced aortic endothelial oxidative injury by regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling [J]. Redox Biol, 2018, 14: 116-125.
|
[6] |
Wisloff U, Loennechen JP, Currie S, et al. Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction [J]. Cardiovasc Res, 2002, 54(1): 162-174.
|
[7] |
叶挺梅, 张世忠, 夏 强. 线粒体钙单向转运体在心肌低氧/复氧损伤中的作用[J]. 中国应用生理学杂志, 2006, 22(2): 136-140.
|
[8] |
Nian M, Lee P, Khaper N, et al. Inflammatory cytokines and postmyocardial infarction remodeling [J]. Circ Res, 2004, 94(12): 1543-1553.
|
[9] |
de Oliveira SG, Claudio ERG, de Almeida SA, et al. Exercise training improves vascular reactivity in ovariectomized rats subjected to myocardial infarction [J]. PLoS One, 2019, 14(4): e0215568.
|
[10] |
Zhao D, Sun Y, Tan Y, et al. Short-duration swimming exercise after myocardial infarction attenuates cardiac dysfunction and regulates mitochondrial quality control in aged mice [J]. Oxid Med Cell Longev, 2018, 2018: 4079041.
|
[11] |
Kuroda J, Ago T, Matsushima S, et al. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart [J]. Proc Natl Acad Sci U S A, 2010, 107(35): 15565-15570.
|
[12] |
Yu L, Yang G, Zhang X, et al. Megakaryocytic leukemia 1 bridges epigenetic activation of NADPH oxidase in macrophages to cardiac ischemia-reperfusion injury [J]. Circulation, 2018, 138(24): 2820-2836.
|
[13] |
Pires Da Silva J, Monceaux K, Guilbert A, et al. SIRT1 protects the heart from ER stress-induced injury by promoting eEF2K/eEF2-dependent autophagy [J]. Cells, 2020, 9(2): 426.
|
[14] |
Li D, Wang X, Huang Q, et al. Cardioprotection of CAPE-oNO2 against myocardial ischemia/reperfusion induced ROS generation via regulating the SIRT1/eNOS/NF-kappaB pathway in vivo and in vitro [J]. Redox Biol, 2018, 15: 62-73.
|
[15] |
Yang H, Wang C, Zhang L, et al. Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression [J]. Chem Biol Interact, 2019, 297: 44-49.
|
[16] |
Donniacuo M, Urbanek K, Nebbioso A, et al. Cardioprotective effect of a moderate and prolonged exercise training involves sirtuin pathway [J]. Life Sci, 2019, 222: 140-147.
|
[17] |
Dioum EM, Chen R, Alexander MS, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1 [J]. Science, 2009, 324(5932): 1289-1293.
|
[18] |
Yang G, Weng X, Zhao Y, et al. The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction [J]. Nat Commun, 2017, 8: 14941.
|
[19] |
Chen A, Chen Z, Xia Y, et al. Liraglutide attenuates NLRP3 inflammasome-dependent pyroptosis via regulating SIRT1/NOX4/ROS pathway in H9c2 cells [J]. Biochem Biophys Res Commun, 2018, 499(2): 267-272.
|
[20] |
Gano LB, Donato AJ, Pasha HM, et al. The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice [J]. Am J Physiol Heart Circ Physiol, 2014, 307(12): H1754-1763.
|