[1] Sara JG, Gema MR, Raquel JL, et al. The crosstalk between cardiac lipotoxicity and mitochondrial oxidative stress in the cardiac alterations in diet-induced obesity in rats[J]. Cells, 2020, 9(2): 451-468. [2] Angela S, Antonio C, Luana M, et al. Different patterns of left ventricular hypertrophy in metabolically healthy and insulin-resistant obese subjects[J]. Nutrients, 2020, 12(2): 412-443. [3] 王海涛, 杨雯茜, 刘玉倩. 有氧运动对高脂膳食小鼠心肌损伤中Nrf2/GPX4/Ferroptosis通路的作用[J]. 中国应用生理学杂志, 2022, 38(2): 1-12. [4] Gregory NR, Frank WB. Health benefits of exercise[J]. Cold Spring Harb Perspect Med, 2018, 8(7): 1-15. [5] D'Amuri A, Sanz JM, Capatti E, et al. Effectiveness of high-intensity interval training for weight loss in adults with obesity: a randomised controlled non-inferiority trial[J]. BMJ Open Sport Exerc Med, 2021, 7(3): 1-10. [6] 王天源, 王晓慧. 有氧运动对糖尿病大鼠PPARα信号通路的影响及其与PPARγ关系[J]. 中国应用生理学杂志, 2020, 36(4): 312-317. [7] Cortassa S, Aon MA, Sollott SJ. Systems biology of control and regulation of substrate selection in cytoplasmic and mitochondrial catabolic networks[J]. Biophys J, 2019, 10: 1-18. [8] An JH, Yoon JH, Suk MH, et al. Up-regulation of lipolysis genes and increased production of AMP-activated protein kinase protein in the skeletal muscle of rats after resistance training[J]. J Exerc Rehabil, 2016, 12(3): 163-170. [9] Bedford TG, Tipton CM, Wilson NC, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures[J]. Appl Physiol Respir Environ Exerc Physiol, 1979, 47(6): 1278-1283. [10] 李方晖, 艾竞一, 李 涛. 高强度间歇训练对大鼠骨骼肌细胞自噬的影响及其调节机制[J]. 体育科学, 2019, 39(2): 29-38. [11] 林鹏杰, 蓝道忠, 翁锡全. 短期有氧运动与高强度间歇运动对男性青年血脂代谢指标的影响[J]. 体育学刊, 2018, 25(4): 140-144. [12] Moniz SC, Islam H, Hazell TJ. Mechanistic and methodological perspectives on the impact of intense interval training on post-exercise metabolism[J]. Scand J Med Sci Sports, 2020, 30(4): 638-651. [13] Kruszewska J, Cudnoch-Jedrzejewska A, Czarzasta K. Remodeling and fibrosis of the cardiac muscle in the course of obesity-pathogenesis and involvement of the extracellular matrix[J]. Int J Mol Sci, 2022, 23(15): 4195-4224. [14] Yue T, Wang Y, Liu H, et al. Effects of high-intensity interval vs. moderate-intensity continuous training on cardiac rehabilitation in patients with cardiovascular disease: A systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 1-16. [15] Silva FS, Bortolin RH, Araújo DN, et al. Exercise training ameliorates matrix metalloproteinases 2 and 9 messenger RNA expression and mitigates adverse left ventricular remodeling in streptozotocin-induced diabetic rats[J]. Cardiovasc Pathol, 2017, 29: 37-44. [16] Carolina CS, Loreana SS, Patricia C, et al. Moderate aerobic exercise-induced cytokines changes are disturbed in PPARα knockout mice[J]. Cytokine, 2020, 134(10): 1-7. [17] Broderick TL, Poirier P, Gillis M. Exercise training restores abnormal myocardial glucose utilization and cardiac function in diabetes[J]. Diabetes Metab Res Rev, 2005, 21(1): 44-50. [18] Nicholas TB, Diana NO, Jeffrey HB, et al. Skeletal muscle ceramides and daily fat oxidation in obesity and diabetes[J]. Metabolism, 2018, 82(5): 118-123. [19] 赵永才, 高炳宏. 运动诱导骨骼肌线粒体生物合成调控机制研究进展[J]. 中国运动医学杂志, 2020, 39(1): 79-84. [20] 沈文清, 何 标, 丁树哲. AMPK——运动调控骨骼肌糖脂代谢的重要激酶[J]. 生命科学, 2022, 34(6): 631-643. |