[1] Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship[J]. Mayo Clin Proc, 2008, 83(5): 584-594. [2] Eggert JA, Palavanzadeh M, Blanton A. Screening and early detection of lung cancer[J]. Semin Oncol Nurs, 2017, 33(2): 129-140. [3] Medes G, Thomas A, Weinhouse S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro[J]. Cancer Res, 1953, 13(1): 27-29. [4] Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer[J]. Br J Cancer, 2020, 122(1): 4-22. [5] Sormendi S, Wielockx B. Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment[J]. Front Immunol, 2018, 29: 9-40. [6] Zuo J, Wen J, Lei M, et al. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT[J]. Med Oncol, 2016, 33(2): 15. [7] Liu L, Ning X, Sun L, et al. Hypoxia inducible factor1- 1α contributes to hypoxia-induced chemoresistance in gastric cancer[J]. Cancer Sci, 2008, 99(1): 121-128. [8] 金家豪, 赵宝生, 刘丹辉, 等. 低氧通过上调乙酰辅酶A羧化酶1促进肺腺癌A549细胞迁移[J]. 解剖学报, 2021, 52(2): 258-263. [9] McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic fitness and plasticity in cancer progression[J]. Trends Cancer, 2020, 6(1): 49-61. [10] Junttila MR, de Sauvage FJ.Influence of tumour micro-environment heterogeneity on therapeutic response[J]. Nature, 2013, 501(7467): 346-354. [11] Dutta A, Sharma-Walia N. Curbing lipids: Impacts on cancer and viral infection[J]. Int J Mol Sci, 2019, 20(3): 644. [12] Tang Z, Xu Z, Zhu X, et al. New insights into molecules and pathways of cancer metabolism and therapeutic implications[J]. Cancer Commun (Lond), 2021, 41(3): 16-36. [13] Wang J, Wu X. The effects of mitochondrial dysfunction on energy metabolism switch by HIF-1α signalling in granulosa cells of polycystic ovary syndrome[J]. Endokrynol Pol, 2020, 71(2): 134-145. [14] Ezzeddini R, Taghikhani M, Somi MH, et al. Clinical importance of FASN in relation to HIF-1α and SREBP-1c in gastric adenocarcinoma[J]. Life Sci, 2019, 224(1): 169-176. [15] Guo D, Bell EH, Mischel P, et al. Targeting SREBP-1-driven lipid metabolism to treat cancer[J]. Curr Pharm Des, 2014, 20(15): 2619-2626. [16] Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology- divergent pathophysiology[J]. Nat Rev Endocrinol, 2017, 13(12): 710-730. [17] Cheng C, Geng F, Cheng X, et al. Lipid metabolism reprogramming and its potential targets in cancer[J]. Cancer Commun (Lond), 2018, 38(1): 27. [18] Hapke RY, Haake SM. Hypoxia-induced epithelial to mesenchymal transition in cancer[J]. Cancer Lett, 2020, 487(1): 10-20. [19] Hunkeler M, Hagmann A, Stuttfeld E, et al. Structural basis for regulation of human acetyl-CoA carboxylase[J]. Nature, 2018, 558(7710): 470-474. [20] Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J]. Nat Med, 2016, 22(10): 1108-1119. [21] Altea-Manzano P, Cuadros AM, Broadfield LA, et al. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take[J]. EMBO Rep, 2020, 21(10): e50635. [22] 颜新建, 李高峰, 唐 梅, 等. 下调脂肪酸合成酶表达对膀胱癌UMUC3细胞增殖、迁移及侵袭能力的影响[J].中国应用生理学杂志, 2019, 35(6): 543-547. [23] Greenlee JD, Subramanian T, Liu K, et al. Rafting down the metastatic cascade: The role of lipid rafts in cancer metastasis, cell death, and clinical outcomes[J]. Cancer Res, 2021, 81(1): 5-17. [24] 宋海岩, 张毅敏, 连 辉, 等. 低氧条件下奥巴克拉联合吉西他滨对乳腺癌细胞的作用[J]. 中国应用生理学杂志, 2020, 36(3): 268-272. [25] Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis[J]. Transl Oncol, 2020, 13(11): 100845. |