[1] Feldmeyer DR, Radnikow G. Developmental alterations in the functional properties of excitatory neocortical synapses[J]. J Physiol, 2009, 587(9): 1889-1896. [2] Lohmann C, Kessels HW. The developmental stages of synaptic plasticity[J]. J Physiol, 2014, 592(1): 13-31. [3] Arlotta P, Molyneaux BJ, Chen J, et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo[J]. Neuron, 2005, 45(2): 207-221. [4] Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology[J]. Front Neuroanat, 2014, 8: 78-98. [5] Valiullina F, Akhmetshina D, Nasretdinov A, et al. Developmental changes in electrophysiological properties and a transition from electrical to chemical coupling between excitatory layer 4 neurons in the rat barrel cortex[J]. Front Neural Circuits, 2016, 10: 1-16. [6] Ammer JJ, Grothe B, Felmy F. Late postnatal development of intrinsic and synaptic properties promotes fast and precise signaling in the dorsal nucleus of the lateral lemniscus[J]. J Neurophysiol, 2012, 107(4): 1172-1185. [7] Etherington SJ, Williams SR. Postnatal development of intrinsic and synaptic properties transforms signaling in the layer 5 excitatory neural network of the visual cortex[J]. J Neurosci, 2011, 31(26): 9526-9537. [8] Kroon T, Van Hugte E, Van Linge L, et al. Early postnatal development of pyramidal neurons across layers of the mouse medial prefrontal cortex[J]. Sci Rep, 2019, 9(1): 1-16. [9] Chen XY, Zhang AF, Zhao W, et al. Electrophysiological characteristics of hippocampal postnatal early development mediated by AMPA receptors in rats. [J]. Acta Physiol Sin, 2018, 70(2): 106-114. [10] Huggenberger S, Vater M, Deisz RA. Interlaminar differences of intrinsic properties of pyramidal neurons in the auditory cortex of mice[J]. Cereb Cortex, 2009, 19(5): 1008-1018. [11] Boldog E, Bakken TE, Hodge RD, et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type[J]. Nat Neurosci, 2018, 21(9): 1185-1195. [12] Patricia PG, Ricardo PD, Noelia GD, et al. Refinement of active and passive membrane properties of layer V pyramidal neurons in rat primary motor cortex during postnatal development[J]. Front Mol Neurosci, 2021, 14: 1-14. [13] 刘文峰, 刘少鹏, 傅 让, 等. 耐力运动对增龄大鼠脑皮层突触可塑性的影响及相关调控机制[J]. 中国应用生理学杂志, 2019, 35(4): 339-345. [14] 胡琰茹, 刘晓莉, 乔德才. 一次性力竭运动过程中大鼠“黑质—丘脑—皮层”通路神经元相干性及递质动态变化[J]. 中国应用生理学杂志, 2017, 33(3): 204-211. [15] Kaneko K, Koyanagi Y, Oi Y, et al. Propofol-induced spike firing suppression is more pronounced in pyramidal neurons than in fast-spiking neurons in the rat insular cortex[J]. Neuroscience, 2016, 339: 548-560. [16] Aller MI, Wisden W. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice[J]. Neuroscience, 2008, 151(4): 1154-1172. [17] Moody WJ, Bosma MM. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells[J]. Physiol Rev, 2005, 85(3): 883-941. [18] Eyal G, Mansvelder HD, De Kock CP, et al. Dendrites impact the encoding capabilities of the axon[J]. J Neurosci, 2014, 34(24): 8063-8071. [19] Jin Z, Choi MJ, Park CS, et al. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons[J]. Brain Res, 2012, 1432: 1-6. [20] Spigelman I, Zhang L, Carlen PL. Patch-clamp study of postnatal development of CA1 neurons in rat hippocampal slices: membrane excitability and K+ currents[J]. J Neurophysiol, 1992, 68(1): 55-69. |