1. Zhao WY, Chen DY, Qi Q. Effect of creatine phosphate sodium on adriamycin-induced cardiotoxicity[J]. Chin J Pathophysio, 2011, 27(5):939-943.
2. Yang XD, Shu WQ, YangSB. Protective effect of Shengmai injection on adriamycin-induced myocardium injury in rats and its mechanism[J].Cent South Pharm, 2008, 6(2):162-165.
3. Yao LM, Chen YM, Yin RX. Effects of grouth hormone on cardiomyocyte apoptosis in adriamycin-induced cardiomyopathy in rats[J]. South Chin J Cardiovascular Diseases, 2005, 11(2):137-139.
4. Zhao JY, WangYL, ZhaoM, et al. The calumenin changes in the apoptosis induced adriamycin injured cardiomyocytes[J]. J Clinic.cardiol, 2015, 31(8):895-898.
5. Niu XF, Zhao YJ, Zhao M, et al. The protective effects of total flavonoids of astragalus on inhibition of endoplasmic reticulum stress in murine model with coxsackie virus B3-induced acute viral myocarditis[J]. J Clinic Cardiol, 2015, 31(2):129-132.
6. Chiang CK, Wang CC, Lu TF, et al. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury[J]. Sci Rep, 2016, 6:34167.
7. Shen M, Wang L, Guo X, et al. A novel endoplasmic reticulum stress-induced apoptosis model using tunicamycin in primary cultured neonatal rat cardiomyocytes[J]. Mol Med Rep, 2015, 12(4):5149-5154.
8. Malla Y, Tritsch E, Ladouce R, et al. Proteome modulation in H9c2 cardiac cells by microRNAs miR-378 and miR-378*[J]. Mol Cell Proteomics, 2014, 13(1):18-29.
9. Xu Y, Jiang L, Huang Y, et al. Solid-state characterization and transformation of various creatine phosphate sodium hydrates[J]. J Pharm Sci, 2014, 103(11):3688-3695.
10. Ming Z, XiaoTong S, YaHong Z, et al. The relationship research on miRNA378*, calumenin, GRP78, bax and bcl-2 in suckling mouse myocardium with myocarditis caused by adriamycin[J]. Chin J Clin Cardiol, 2016, 32:603-606.
11. Park JH, Choi SH, Kim H, et al. Doxorubicin Regulates Autophagy Signals via Accumulation of Cytosolic Ca2+ in Human Cardiac Progenitor Cells[J]. Int J Mol Sci, 2016, 17(10):E1680.
12. Choi SK, Lim M, Byeon SH, et al. Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats[J]. Sci Rep, 2016, 6:31925.
13. Boß M, Newbatt Y, Gupta S, et al. AMPK-independent inhibition of human macrophage ER stress response by AICAR[J]. Sci Rep, 2016, 6:32111.
14. Nagalingam RS, Sundaresan NR, Noor M, et al. Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism[J]. J Biol Chem, 2014, 289(39):27199-27214.
15. Nagalingam RS, Sundaresan NR, Gupta MP, et al. A cardiacenriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling[J]. J Biol Chem, 2013, 288(16):11216-11232.
16. Ooi JY, Bernardo BC, McMullen JR. the therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy[J]. Future Med Chem, 2014, 6(2):205-222.
17. Fang J, Song XW, Tian J, et al. Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J]. Apoptosis, 2012, 17(4):410-423.
18. Sahoo SK, Kim DH. Characterization of calumenin in mouse heart[J]. BMB Rep, 2010, 43(3):158-163.
19. Lee JH, Kwon EJ, Kim DH. Calumenin has a role in the alleviation of ER stress in neonatal rat cardiomyocytes[J]. Biochem Biophys Res Commun, 2013, 439(3):327-332. |