1. Laresche C, Pelletier F, Garnache-Ottou F, et al. Increased levels of circulating microparticles are associated with increased procoagulant activity in patients with cutaneous malignant melanoma[J]. J Invest Dermatol, 2014, 134(1):176-182.
2. Caporali A, Miscianinov V, Saif J, et al. MicroRNA transport in cardiovascular complication of diabetes[J]. Biochim Biophys Acta, 2016, 1861(12 pt B):2111-2120.
3. Badimon L, Suades R, Fuentes E, et al. Role of platelet-derived microvesicles as crosstalk mediators in atherothrombosis and future pharmacology targets:a link between inflammation, atherosclerosis, and thrombosis[J]. Front Pharmacol, 2016, 7:1-17.
4. Lawson C, Vicencio JM, Yellon DM, et al. Microvesicles and exosomes:New players in metabolic and cardiovascular disease[J]. J Endocrinol, 2016, 228(2):R57-R71.
5. Zhang Q, Shang M, Zhang M, et al. Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells promote apoptosis and oxidative stress in H9c2 cardiomyocytes[J]. BMC Cell Biol, 2016, 17(1):25.
6. Miller VM, Lahr BD, Bailey KR, et al. Specific cell-derived microvesicles:Linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women[J]. Atherosclerosis, 2016, 246:21-28.
7. Larson MC, Hillery CA, Hogg N. Circulating membrane-derived microvesicles in redox biology[J]. Free Radic Biol Med, 2014, 73(3):214-228.
8. Chen JY, An R, Liu ZJ, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats[J]. Acta Pharmacol Sin, 2014, 35(9):1121-1128.
9. Zhu R, Bi LQ, Wu SL, et al. Iptakalim attenuates hypoxia-induced pulmonary arterial hypertension in rats by endothelial function protection[J]. Mol Med Rep, 2015, 12(2):2945-2952.
10. Yilmaz B, Usta C. Ellagic acid-induced endothelium-dependent and endothelium-independent vasorelaxation in rat thoracic aortic rings and the underlying mechanism[J]. Phyther Res, 2013, 27(2):285-289.
11. Wang SX, Zhang Q, Shang M, et al. Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells impair relaxation of rat thoracic aortic rings[J]. Chin J Appl Physiol, 2014, 30(6):560-566.
12. Huang JH, Han WZ, Jin X, et al. The selective dilatation effects of iptakalim on basilar and pulmonary arterioles in high-altitude hypoxic rats[J]. Chin J Appl Physiol, 2014, 30(1):1-3.
13. Wang SY, Cui WY, Wang H. The new antihypertensive drug iptakalim activates ATP-sensitive potassium channels in the endothelium of resistance blood vessels[J]. Acta Pharmacol Sin, 2015, 36(12):1444-1450.
14. Guo X, Cao W, Yao J, et al. Cardioprotective effects of tilianin in rat myocardial ischemia-reperfusion injury[J]. Mol Med Rep, 2015, 11(3):2227-2233.
15. Zong F, Zuo XR, Wang Q, et al. Iptakalim rescues human pulmonary artery endothelial cells from hypoxia-induced nitric oxide system dysfunction[J]. Exp Ther Med, 2012, 3(3):535-539.
16. Burger D, Turner M, Munkonda MN, et al. Endothelial microparticle-derived reactive oxygen species:role in endothelial signaling and vascular function[J]. Oxid Med Cell Longev, 2016, 2016:12-15.
17. Wu Y, He MY, Ye JK, et al. Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca2+/Akt/eNOS pathway[J]. J Cell Mol Med, 2016. doi:10.1111.15/jcmm.13006. http://www.ncbi.nlm.nih.gov/pubmed/27709781. |