[1] Vestbo J, Hurd SS, Rodriguez-Roisin R. The 2011 revision of the global strategy for the diagnosis, management and prevention of COPD-why and what[J]. Clin Respir J, 2012, 6(4):208-214. [2] Salomon JA, Vos T, Hogan DR, et al. Common values in assessing health outcomes from disease and injury:disability weights measurement study for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859):2129-2143. [3] Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease:current burden and future projections[J]. Eur Respir J, 2006, 27(2):397-412. [4] Trupin L, Earnest G, San Pedro M, et al. The occupational burden of chronic obstructive pulmonary disease[J]. Eur Respir J, 2003, 22(3):462-469. [5] Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China:a large, population-based survey[J]. Am J Respir Crit Care Med, 2007, 176(8):753-760. [6] 唐文芳, 刘日辉, 于雅琴, 等. 2000-2014年中国40岁以上成人慢性阻塞性肺疾病患病率的Meta分析[J]. 吉林大学学报(医学版), 2015, 41(5):961-968. [7] Hamid Q, Cosio M, Lim S. Inflammation and remodeling in chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2004, 114(6):1479-1481. [8] Hogg JC, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease[J]. N Engl J Med, 2004, 350(26):2645-2653. [9] Kranenburg AR, Willems-Widyastuti A, Moori WJ, et al. Enhanced bronchial expression of extracellular matrix proteins in chronic obstructive pulmonary disease[J]. Am J Clin Pathol, 2006, 126(5):725-735. [10] Wright JL, Postma DS, Kerstjens HA, et al. Airway remodeling in the smoke exposed guinea pig model[J]. Inhal Toxicol, 2007, 19(11):915-923. [11] Mahmood MQ, Sohal SS, Shukla SD, et al. Epithelial mesenchymal transition in smokers:large versus small airways and relation to airflow obstruction[J]. Int J Chron Obstruct Pulmon Dis, 2015, 10:1515-1524. [12] Sohal SS, Walters EH. Epithelial mesenchymal transition (EMT) in small airways of COPD patients[J]. Thorax, 2013, 68(8):783-784. [13] Sohal SS, Ward C, Walters EH.Importance of epithelial mesenchymal transition (EMT) in COPD and asthma[J]. Thorax, 2014, 69(8):768. [14] Wu L, Chau J, Young RP, et al. Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease[J]. Thorax, 2004, 59(2):126-129. [15] Xie S, Sukkar MB, Issa R, et al. Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factorβ[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(1):L245-L253. [16] Konigshoff M, Kneidinger N, Eickelberg O. TGF-beta singnaling in COPD:deciphering genetic and cellular susceptibilities for future therapeutic regimen[J]. Swiss Med Wkly, 2009, 139(39-40):554-563. [17] Pendyala S, Natarajan V. Redox regulation of NOX proteins[J]. Respir Physiol Neurobiol, 2010, 174(3):265-271. [18] Bai TR, Cooper J, Koelmeyer T, et al. The effect of age and duration of disease on airway structure in fatal asthma[J]. Am J Respir Crit Care Med, 2000,162(2 Pt 1):663-669. [19] James A, Carroll N. Airway smooth muscle in health and disease; methods of measurement and relation to function[J]. Eur Respir J, 2000, 15(4):782-789. [20] Benayoun L, Druilhe A, Dombret MC, et al. Airway structural alterations selectively associated with severe asthma[J]. Am J Respir Crit Care Med, 2003, 167(10):1360-1368. [21] Hamid Q, Cosio M, Lim S. Inflammation and remodeling in chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2004, 114(6):1479-1481. [22] Potter-Perigo S, Baker C, Tsoi C, et al. Regulation of proteoglycan synthesis by leukotriene d4 and epidermal growth factor in bronchial smooth muscle cells[J]. Am J Respir Cell Mol Biol, 2004, 30(1):101-108. [23] Johnson PR, Black JL, Carlin S, et al. The production of extracellular matrix proteins by human passively sensitized airway smooth muscle cells in culture:the effect of beclomethasone[J]. Am J Respir Crit Care Med, 2000, 162(6):2145-2151. [24] Moir LM, Burgess JK, Black JL. Transforming growth factor beta 1 increases fibronectin deposition through integrin receptor alpha 5 beta 1 on human airway smooth muscle[J]. J Allergy Clin Immunol, 2008, 121(4):1034-1039. [25] Bourke JE, Li X, Foster SR, et al. Collagen remodeling by airway smooth muscle is resistant to steroids and β2-agonists[J]. Eur Respir J, 2011, 37(1):173-182. [26] Dekkers BG, Schaafsma D, Tran T, et al. Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype[J]. Am J Respir Cell Mol Biol, 2009, 41(4):494-504. [27] Tran T, Halayko AJ. Extracellular matrix and airway smooth muscle interactions:a target for modulating airway wall remodeling and hyperresponsiveness[J]. Can J Physiol Pharmacol, 2007, 85(7):666-671. [28] Churg A, Tai H, Coulthard T, et al. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall[J]. Am J Respir Crit Care Med, 2006, 174(12):1327-1334. [29] Gorowiec MR, Borthwick LA, Parker SM, et al. Free radical generation induces epithelial to mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism[J]. Free Radic Biol Med, 2012, 52(6):1024-1032. [30] Kenyon NJ, Ward RW, McGrew G, et al. TGF-beta1 causes airway fibrosis and increased collagen I and Ⅲ mRNA in mice[J]. Thorax, 2003, 58(9):772-777. [31] Shin JH, Shim JW, Kim DS, et al. TGF-beta effects on airway smooth muscle cell proliferation, VEGF release and signal transduction pathways[J]. Respirology, 2009, 14(3):347-353. [32] Evans RA, Tian YC, Steadman R, et al. TGF-betal-mediated fibroblast myofibroblast terminal differentiation the role of smad proteins[J]. Exp Cell Res, 2003, 282(2):90-100. [33] 陈丽娜, 周刚, 吴乐, 等. NADPH氧化酶抑制剂apocynin对力竭运动大鼠运动性蛋白尿的影响[J]. 中国应用生理学杂志, 2016, 32(2):116-120. [34] Evans RA, Tian YC, Steadman R, et al. TGF-betal-mediated fibroblast myofibroblast terminal differentiation the role of smad proteins[J]. Exp Cell Res, 2003, 282(2):90-100. [35] Liu Y, Gao W, Zhang D. Effects of cigarette smoke extract on A549 cells and human lung fibroblasts treated with transforming growth factor-beta1 in a coculture system[J]. Clin Exp Med, 2010, 10(3):159-167. |