[1] Avogaro A, Fadini GP. Insulin treatment in patients with diabetes and heart failure: defendant on the stand[J]. Eur J Heart Fail, 2018, 20(5): 896-897. [2] Othman AI, El-Sawi MR, El-Missiry MA, et al. Epigallocatechin-3-gallate protects against diabetic cardiomyopathy through modulating the cardiometabolic risk factors, oxidative stress, inflammation, cell death and fibrosis in streptozotocin-nicotinamide-induced diabetic rats[J]. Biomed Pharmacother, 2017, 94(3): 362-373. [3] Althunibat OY, Al Hroob AM, Abukhalil MH, et al. Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy[J]. Life Sci, 2019, 221(15): 83-92. [4] Chia YMF, Teng TK, Chandramouli C, et al. Clinical correlates and pharmacological management of Asian patients with concomitant diabetes mellitus and heart failure[J]. Heart Fail Rev, 2018, 23(3): 461-468. [5] Parim B, Sathibabu Uddandrao VV, Saravanan G. Diabetic cardiomyopathy: molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy [J]. Heart Fail Rev, 2019, 24(2): 279-299. [6] Zhang YW, Wang X, Ren X, et al. Involvement of glucose-regulated protein 78 and spliced x-box binding protein 1 in the protective effect of gliclazide in diabetic nephropathy[J]. Diabetes Res Clin Pr, 2018, 146(2): 41-47. [7] Abd El Motteleb DM, Abd El Aleem DI. Renoprotective effect of Hypericum perforatum against diabetic nephropathy in rats: Insights in the underlying mechanisms[J]. Clin Exp Pharmacol Physiol, 2017, 44(4): 509-521. [8] 程杰坤, 孙小慧, 高莉萍, 等. 法舒地尔对异丙肾上腺素诱导大鼠心肌肥厚的干预作用及其机制[J]. 中国应用生理学杂志, 2016, 32(5): 414-418. [9] 张 恒, 陶 敏, 康品方, 等. 厄贝沙坦对糖尿病大鼠心肌损伤中Notch1信号通路的影响[J]. 中国应用生理学杂志, 2018, 34(5): 427-431. [10]Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. Am J Cardiol, 1972, 30(6): 595-602. [11]Kaikita K, Ogawa H. Rho-kinase pathway[J]. Circ J, 2012, 76(11): 2536-2537. [12]Etienne-Manneville S, Hall A . Rho GTPase in cell biology[J]. Nature, 2003, 420(6916): 629-635. [13]李 健, 陈天萌, 曹 剑, 等. 上调血红素氧合酶1对糖尿病心肌梗死大鼠心功能的远期影响[J]. 中国应用生理学杂志, 2014, 30(5): 421-426. [14]Takahashi T, Harris RC. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabeticeNOS knockout mice[J]. J Diabetes Res, 2014, 20(14): 541-590 [15]Di Lorenzo A, Lin MI, Murata T, et al. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases[J]. J Cell Sci, 2013, 126(24): 5541-5552. [16]Soliman H, Craig GP, Nagareddy P, et al. Role of inducible nitric oxide synthase in induction of RhoA expression in hearts from diabetic rats[J]. Crdiovasc Res, 2008, 79(2): 322-330. [17]Zhou H, Sun Y, Zhang L, et al. The RhoA/ROCK pathway mediates high glucose-induced cardiomyocyte apoptosis via oxidative stress, JNK, and p38MAPK pathways[J]. Diabetes Metab Res Rev, 2018, 34(6): 3022-3029. [18]Xie X, Peng J, Chang X, et al. Activation of RhoA/ROCK regulates NF-κB signaling pathway in experimental diabetic nephropathy[J]. Mol Cell Endocrinol, 2013, 369(1-2): 86-97. [19]Eid S, Sas KM, Abcouwer SF, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism[J]. Diabetologia, 2019, 62(9): 1539-1549. |