[1] 邓树勋, 王 健, 乔德才, 等. 运动生理学(第三版)[M]. 北京: 高等教育出版社, 2015. [2] 池爱平, 王子楠, 史 兵, 等. 慢性疲劳综合征中学生运动前后尿液差异代谢物的比较[J]. 中国应用生理学杂志, 2018, 34(4): 340-344. [3] Baquet G, Gamelin FX, Mucci P, et al. Continuous vs. interval aerobic training in 8- to 11-year-old children [J]. J Strength Cond Res, 2010, 24(25): 1381-1388. [4] Astrand I. Aerobic work capacity in men and women with special reference to age [J]. Acta Physiol Scand (Suppl), 1960, 49(169): 1-92. [5] Kairouz C. Jacob C, El Hage R, et al. Effect of hyperventilation followed by a 1 min recovery on the Wingate performance [J]. Sci Sports, 2013, 28(1): 15-18. [6] 王 钧. 基于主观感觉疲劳量表和心率变异性相结合的运动性疲劳监测[D]. 武汉: 武汉体育学院, 2015. [7] 张志敏. 篮球运动员运动性疲劳状态下的注意特征和情绪变化研究[D]. 武汉: 武汉体育学院, 2016. [8] Aiping C, Zhimei S, Wenfei Z, et al. Characterization of a protein-bound polysaccharide from Herba Epimedii and its metabolic mechanism in chronic fatigue syndrome[J]. J Ethnopharmacol, 2017, 203: 241-251. [9] Xia J, Wishart DS. MetpA: a web-based metabolomics tool for pathway analysis and visualization[J]. Bioinformatics, 2020, 26(18): 2342-2344. [10]Danaher J, Gerber T, Wellard RM, et al. The use of metabolomics to monitor simultaneous changes in metabolic variables following supramaximal low volume high intensity exercise [J]. Metabolomics, 2016, 12(7): 1-13. [11]Reinehr T, Wolters B, Knop C, et al. Changes in the serum metabolite profile in obese children with weight loss [J]. Eur J Nutr, 2015, 54(2): 173-181. [12]Glynn EL, Piner LW, Huffman KM, et al. Impact of combined resistance and aerobic exercise training on branched-chain amino acid turnover, glycine metabolism and insulin sensitivity in overweight humans [J]. Diabetologia, 2015, 58(10): 2324-2335. [13]Berton R, Conceicao MS, Libardi CA, et al. Metabolic time-course response after resistance exercise: A metabolomics approach [J]. J Sport Sci, 2017, 35(12): 1211-1218. [14]Rauschert S, Uhl O, Koletzko B, et al. Metabolomic biomarkers for obesity in humans: a short review [J]. Ann Nutr Metab, 2014, 64(3-4): 314-324. [15]Enea C, Seguin F, Petitpas-Mulliez J, et al. 1H NMR-based metabolomics approach for exploring urinary metabolome modifications after acute and chronic physical exercise[J]. Anal Bioanal Chem, 2010, 396(3): 1167-1176. [16]Shlomit RA, Fadia H, Kim L, et al. Plasma metabolomics in response to an acute bout of exercise in adolescents boys and girls[J]. Med Sci Sport Exer, 2017, 49(5): 282-283. [17]岳秀飞. 基于GC-MC的举重与中长跑运动员血清及尿液代谢组学研究[D]. 苏州: 苏州大学, 2011. [18]赵述强, 时洪举, 郑宁宁. 6周不同强度间歇性运动对肥胖大鼠体成分的影响[J]. 中国应用生理学杂志, 2019, 35(4): 326-330. [19]李 洁, 谈文博, 王 艳. 有氧运动对衰老大鼠骨骼肌线粒体能量代谢的影响[J]. 中国应用生理学杂志, 2018, 34(3): 234-237. [20]Mukherjee K, Edgett BA, Burrows HW, et al. Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50-60 year old masters athletes [J]. Plos One, 2014, 9(3) e92031. |