[1] |
Onyoh EF, Hsu WF, Chang LC, et al. The rise of colorectal cancer in Asia: Epidemiology, screening, and management[J]. Curr Gastroenterol Rep, 2019, 21(8): 36-36.
|
[2] |
Pazzaglia L, Leonardi L, Conti A, et al. miR-196a expression in human and canine osteosarcomas: A comparative study[J]. Res Vet Sci, 2015, 99(11):112-119.
|
[3] |
Ju HQ, Lu YX, Wu QN, et al. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer[J]. Oncogene, 2017, 36(45): 6282-6292.
|
[4] |
伍学翠, 赵 云, 李 聪, 等. miRNA在异丙肾上腺素诱导大鼠心肌肥厚中的表达及生物信息学分析[J]. 中国应用生理学杂志, 2019, 35(5): 476-480.
|
[5] |
Slattery ML, Herrick JS, Mullany LE, et al. An evaluation and replication of miRNAs with disease stage and colorectal cancer-specific mortality[J]. Int J Cancer, 2015, 137(2): 428-438.
|
[6] |
Banerjee A, Pathak S, Subramanium VD, et al. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives[J]. Drug Discov Today, 2017, 22(8): 1224-1232.
|
[7] |
王 倩, 袁莉莉, 范文涛.基于GEO和TCGA数据库分析促癌基因INHBA和抑癌基因CLCA4、CA4在结直肠癌中表达[J]. 中国应用生理学杂志, 2019, 35(3): 279-282.
|
[8] |
Rojas F, Hernandez ME, Silva M, et al. The oncogenic response to MiR-335 is associated with cell surface expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) activity[J]. PloS One, 2015, 10(7): e0132026.
|
[9] |
Alipoor SD, Adcock IM, Garssen J, et al. The roles of miRNAs as potential biomarkers in lung diseases[J]. Eur J Pharmacol, 2016, 791(1): 395-404.
|
[10] |
O'Brien J, Hayder H, Zayed Y, et al. Overview ofmicroRNA biogenesis, mechanisms of actions, and circulation[J]. Front Endocrinol, 2018, 9(3): e402-e413.
|
[11] |
Li H, Xie S, Liu M, et al. The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis[J]. Int J Oncol, 2014, 45(6): 197-208.
|
[12] |
Wang K, Wei J, Yan S, et al. LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335-5p and promotes proliferation and invasion in renal cell carcinoma[J]. Molecular Cancer, 2017, 16(1): e166-e175.
|
[13] |
Wang F, Li L, Piontek K, et al. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma[J]. Hepatology, 2018, 67(3): 940-954.
|
[14] |
Gougelet A. Exosomal microRNAs as a potential therapeutic strategy in hepatocellular carcinoma[J]. Hepatology, 2018, 10(11): 5-9.
|
[15] |
Nóbrega-Pereira S, Fernandez-Marcos PJ, Brioche T, et al. G6PD protects from oxidative damage and improves healthspan in mice[J]. Nat Commun, 2016, 7(1): e10894-e10902.
|
[16] |
Yan G, Wang X, Yang M, et al. Long non-coding RNA TUG1 promotes progression of oral squamous cell carcinoma through upregulating FMNL2 by sponging miR-219[J]. Am J Cancer Res, 2017, 7(9): e1899-e1910.
|
[17] |
Liu R, Guo H, Lu S. MiR-335-5p restores cisplatin sensitivity in ovarian cancer cells through targeting BCL2L2[J]. Cancer Med, 2018, 7(9): 4598-4609.
|
[18] |
Zhang D, Yang N. MiR-335-5p inhibits cell proliferation, migration and invasion in colorectal cancer through downregulating LDHB[J]. J Buon, 2019, 24(3): 1128-1136.
|
[19] |
Belfield KD, Tichy EM. Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency[J]. Am J Health Syst Pharm, 2018, 75(3): 97-104.
|
[20] |
Kalnoky M, Bancone G, Kahn M, et al. Cytochemical flow analysis of intracellular G6 PD and aggregate analysis of mosaic G6 PD expression[J]. Eur J Haematol, 2018, 100(3): 294-303.
|
[21] |
Thomas J, Ohtsuka M, Pichler M, et al. MicroRNAs: clinical relevance in colorectal cancer[J]. Int J Mol Sci, 2015, 16(12): 28063-28076.
|