Home  About Journal Instructions for Authors Editorial Board Subscribe Advertisement Messages Board 中文

CJAP ›› 2022, Vol. 38 ›› Issue (5): 515-519.doi: 10.12047/j.cjap.6321.2022.096

• ORIGINAL ARTICLES • Previous Articles     Next Articles

Effect of iron death inhibitor on hypoxia/reoxygenation injury of cardiomyocytes and its mechanism

HAN Yue1, LI Feng-xiang2, YANG Guo-hong2, YUAN Hui2, ZHANG Xyu-dong2, SUN Jian2△   

  1. Mudanjiang Medical University, Mudanjiang 157011, China
  • Received:2022-05-27 Revised:2022-09-20 Online:2022-09-28 Published:2023-04-23

Abstract: Objective: To investigate the effects of ferrostatin-1 (Fer-1) on cardiomyocyte hypoxia/reoxygenation injury and its mechanisms. Methods: The original generation of myocardial cells were extracted from 1~3 d newborn SD rats, which were randomly divided into normal control group (control), hypoxia reoxygenation (H/R) group and hypoxia reoxygenation + iron death inhibitors group (H/R + Fer-1). After 52 h of culture, cells in H/R group were added with 4 mmol/L Na2S2O4 solution. After 1 h of hypoxia, cells were reoxygenated with DMEM medium containing 10% calf serum for 3 h.The H/R+ Fer-1 group was pretreated with Fer-1 (2 μmol/L) for 24 h and then subjected to hypoxia and reoxygenation. The release rate of lactate dehydrogenase (LDH) was measured by UV spectrophotometry, the cell survival rate was measured by CCK-8 method, SOD was measured by xanthine oxidase method, MDA was measured by chemical coloration, and the changes of mitochondrial membrane potential and reactive oxygen species (ROS) were observed by immunofluorescence. Western blot was used to detect the expressions of ACSL4 and GPX4. Results: Compared with the control group, the cell activity, SOD release and MMP level were decreased (P<0.05), the levels of LDH, MDA and ROS were increased (P<0.05), the protein expression of ACSL4 was increased (P<0.05), and the protein expression of GPX4 was decreased (P<0.05) in H/R group. Compared with the H/R group, the cell activity, SOD release and MMP level were increased (P<0.05), the level of LDH, MDA and ROS were decreased (P<0.05), the protein expression of ACSL4 was decreased (P<0.05), and the protein expression of GPX4 was increased (P<0.05) in H/R+Fer-1 group. Conclusion: Fer-1 can inhibit the production of intracellular reactive oxygen species by regulating ACSL4 and GPX4, thereby alleviating the hypoxia and reoxygenation injury of primary cardiomyocytes caused by iron death.

Key words: SD mice, iron death, Ferrostatin-1, ACSL4, GPX4, myocardial hypoxia reoxygenation injury

CLC Number: 

Contact Email:editor@cjap.ac.cn
Copyright © 2015 CJAP, All Rights Reserved.
Powered by Beijing Magtech Co. Ltd