[1] Bilo G, Caravita S, Torlasco C, et al. Blood pressure at high altitude: physiology and clinical implications[J]. Kardiol Pol, 2019, 77(6): 596-603. [2] Lorell B, Apstein C, Weinberg E, et al. Diastolic function in left ventricular hypertrophy: clinical and experimental relationships[J]. Eur Heart J, 1990, 11(Suppl G): 54-64. [3] Tasatargil A, Tanriover G, Barutcigil A, et al. Protective effect of resveratrol on methylglyoxal-induced endothelial dysfunction in aged rats[J]. Aging Clin Exp Res, 2019, 31(3): 331-338. [4] Xu D, Li Y, Zhang B, et al. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats[J]. Int J Med Sci, 2016, 13(12): 942-954. [5] Chung J, Manganiello V, Dyck J. Resveratrol as a calorie restriction mimetic: therapeutic implications[J]. Trends Cell Biol, 2012, 22(10): 546-554. [6] Yan C, Wang Z, Liu W et al. Resveratrol ameliorates high altitude hypoxia-induced osteoporosis by suppressing the ROS/HIF signaling pathway[J]. Mol, 2022, 27(17): 538-546. [7] Genovese A, Alfieri W, Latte S, et al. Regression of myocardial hypertrophy in the rat following removal of acute or chronic hypobaric hypoxia[J]. Eur Heart J, 1982, 3(Suppl A): 161-164. [8] Flores K, Siques P, Brito J, et al. Lower body weight in rats under hypobaric hypoxia exposure would lead to reduced right ventricular hypertrophy and increased AMPK activation[J]. Front Physiol, 2020, 11: 342-360. [9] LI Y, Zhou Y, Zhang D, et al. Hypobaric hypoxia regulates iron metabolism in rats[J]. J Cell biochem, 2019, 120(8): 14076-14087. [10] Siques P, Brito J, Flores K, et al. Long-term chronic intermittent hypobaric hypoxia induces glucose transporter (GLUT4) translocation through AMP-activated protein kinase (AMPK) in the soleus muscle in lean rats[J]. Front Physiol, 2018, 9: 799-813. [11] Deng B, Liu W, Pu L, et al. Quantitative proteomics reveals the effects of resveratrol on high-altitude polycythemia treatment[J]. Prote, 2020, 20(14): 1335-1346. [12] Ooi J, Bernardo B, Mcmullen J. The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy[J]. Future Med Chem, 2014, 6(2): 205-222. [13] Dolinsky V, Soltys C, Rogan K, et al. Resveratrol prevents pathological but not physiological cardiac hypertrophy[J]. J Mol Med (Berl), 2015 , 93(4): 413-425. [14] Xie S, Deng Y, Pan Y, et al. Melatonin protects against chronic intermittent hypoxia-induced cardiac hypertrophy by modulating autophagy through the 5' adenosine monophosphate-activated protein kinase pathway[J]. Biochem Biophys Res Commun, 2015, 464(4): 975-981. [15] Truong V, Jun M, Jeong W. Role of resveratrol in regulation of cellular defense systems against oxidative stress[J]. Bio Factors, 2018, 44(1): 36-49. [16] Zhang X, Zhang X, Xv J, et al. Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits of rats[J]. Eur J Pharmacol, 2018, 818: 300-305. [17] Han Y, Jo H, Cho J, et al. Resveratrol as a tumor-suppressive nutraceutical modulating tumor microenvironment and malignant behaviors of cancer[J]. Int J Mol Sci, 2019, 20(4): 925-942. [18] Wang H, Feng H, Zhang Y. Resveratrol inhibits hypoxia-induced glioma cell migration and invasion by the p-STAT3/miR-34a axis[J]. Neoplasma, 2016, 63(4): 532-539. |