[1] Gorisse L, Jaisson S, Piétrement C, et al. Carbamylated proteins in renal disease: Aggravating factors or just biomarkers?[J]. Int J Mol Sci, 2022, 23(1): 574-608. [2] 樊春华, 田 宽, 何 菲, 等. 氰酸盐诱导人脐静脉内皮细胞氧化应激损伤[J]. 中国细胞生物学学报, 2017, 39(12): 1550-1555. [3] 田 宽, 袁德智, 胡 玲, 等. 氰酸盐诱导氧化应激促进肾小管上皮细胞上皮-间充质转化[J]. 中国细胞生物学学报, 2019, 41(2): 228-234. [4] Sumida K, Kwak L, Grams ME, et al. Lung function and incident kidney disease: The atherosclerosis risk in communities (ARIC) study[J]. Am J Kidney Dis, 2017, 70(5): 675-685. [5] Leslie MD, Ridoli M, Murphy JG, et al. Isocyanic acid (HNCO) and its fate in the atmosphere: a review[J]. ESPI, 2019, 21(5): 793-808. [6] Himmelfarb J. Urea: surrogate or toxin?[J]. Kidney Int, 1999, 56(2): 754-755. [7] GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225): 709-733. [8] 胡 玲, 田 宽, 张 滔, 等. 氰酸盐诱导人正常肝细胞HL-7702氧化应激损伤[J]. 中华肝脏病杂志, 2020, 28(5): 446-449. [9] Hu L, Tian K, Zhang T, et al. Cyanate induces oxidative stress injury and abnormal lipid metabolism in liver through Nrf2/HO-1[J]. Molecules, 2019, 24(18): 3231-3261. [10] Kalim S, Berg AH, Karumanchi SA, et al. Protein carbamylation and chronic kidney disease progression in the Chronic Renal Insufficiency Cohort Study[J].Nephrol Dial Transpl, 2021, 37(1): 139-147. [11] Ok E, Basnakian AG, Apostolov EO, et al. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease[J]. Kidney Int, 2005, 68 (1): 173-178. [12] Kraus LM, Garber L, Handorf CR, et al. Carbamoylation of glomerular and tubular proteins in patients with kidney failure: a potential mechanism of ongoing renal damage[J]. SMW, 2001, 131(11-12): 139-147. [13] Chetan R, Shobhit G, Syed AM, et al. Biochanin A alleviates unilateral ureteral obstruction-induced renal interstitial fibrosis and inflammation by inhibiting the TGF-β1/Smad2/3 and NF-kB/NLRP3 signaling axis in mice[J]. Life Sci, 2022: 298: 520-527. [14] Anees M, Akbar H, Ibrahim M, et al. Pulmonary functions and factors affecting them in patients with chronic kidney disease[J]. J Coll Physicians Surg Pak, 2020, 30(10): 1082-1085. [15] Kwon EJ, Ju JH. Impact of posttranslational modification in pathogenesis of rheumatoid arthritis: Focusing on citrullination, carbamylation, and acetylation[J]. Int J Mol Sci, 2021, 22(19): 10576-10631. [16] Sakai N, Tager AM. Fibrosis of two: epithelial cell-fibroblast interactions in pulmonary fibrosis[J]. Biochim Biophys Acta, 2013, 1832(7): 911-921. [17] Chioma OS, Drake WP. Role of microbial agents in pulmonary fibrosis[J]. Yale J Biol Med, 2017, 90(2): 219-227. [18] Case AH. Clinical overview of progressive fibrotic interstitial lung disease[J]. Front Med (Lausanne), 2022, 9: 839-858. [19] Conese M, Di Gioia S.Pathophysiology of lung disease and wound repair in cystic fibrosis[J]. Pathophysiology, 2021, 28(1): 155-188. [20] Estornut C, Milara J, Bayarri MA, et al. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis[J]. Front Pharmacol, 2021, 12: 794-797. [21] Caldeira D, Weiss D, Rocco P, et al. Mitochondria in focus: From function to therapeutic strategies in chronic lung diseases[J]. Front Immunol, 2021, 12: 782074. [22] Shaykh M, Pegoraro AA, Mo W, et al. Carbamylated proteins activate glomerular mesangial cells and stimulate collagen deposition[J]. J Lab Clin Med, 1999, 133(3): 302-308. [23] Musaelyan A, Lapin S, Nazarov V, et al. Vimentin as antigenic target in autoimmunity: A comprehensive review[J]. Autoimmun Rev, 2018, 17(9): 926-934. [24] Rockey DC, Bell PD, Hill JA. Fibrosis-a common pathway to organ injury and failure[J]. N Engl J Med, 2015, 372(12): 1138-1149. [25] Sgalla G, Iovene B, Calvello M, et al. Idiopathic pulmonary fibrosis: pathogenesis and management[J]. Respir Res, 2018, 19(1): 32-68. [26] Barratt SL, Creamer A, Hayton C, et al. Idiopathic pulmonary fibrosis (IPF): an overview[J]. J Clin Med, 2018, 7(8): 201-235. [27] Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases[J]. Int J Mol Med, 2017, 40(3): 587-606. |