间歇性禁食改善胰岛素抵抗的研究进展

孙旭瑞, 卢琰, 袁媛, 陈青, 张勇, 李秋

营养学报 ›› 2025, Vol. 47 ›› Issue (1) : 99-104.

营养学报 ›› 2025, Vol. 47 ›› Issue (1) : 99-104.
综述

间歇性禁食改善胰岛素抵抗的研究进展

  • 孙旭瑞1, 卢琰2, 袁媛3, 陈青1, 张勇4, 李秋1
作者信息 +

RECENT ADVANCES IN THE IMPROVEMENT OF INSULIN RESISTANCE BY INTERMITTENT FASTING

  • SUN Xu-rui1, LU Yan2, YUAN Yuan3, CHEN Qing1, ZHANG Yong4, LI Qiu1
Author information +
文章历史 +

摘要

已有大量临床试验证实进行一定程度的能量限制可以改善胰岛素抵抗。间歇性禁食作为能量限制的一种方式,在实施过程中对改善机体代谢、缓解炎症等方面与能量限制具有相似的作用,且患者依从性较能量限制更高。因此,越来越受到重视。本文就间歇性禁食改善胰岛素抵抗的研究进展做一综述,旨在为改善胰岛素抵抗提供新的思路。

Abstract

A large number of clinical trials have confirmed that appropriate caloric restriction can improve insulin resistance. As a way of energy restriction, intermittent fasting has similar effects to caloric restriction in terms of improving body metabolism and alleviating chronic inflammation. Moreover, the patients on intermittent fasting have better compliance than those on caloric restriction, so intemittent fasting has attracted more and more attention. This review outlines the research progress in the effects of intermittent fasting on insulin resistance, in order to provide new ideas for improving insulin resistance.

关键词

胰岛素抵抗 / 间歇性禁食 / 代谢转换 / 慢性炎症

Key words

insulin resistance / intermittent fasting / metabolic transform / chronic inflammation

引用本文

导出引用
孙旭瑞, 卢琰, 袁媛, 陈青, 张勇, 李秋. 间歇性禁食改善胰岛素抵抗的研究进展[J]. 营养学报. 2025, 47(1): 99-104
SUN Xu-rui, LU Yan, YUAN Yuan, CHEN Qing, ZHANG Yong, LI Qiu. RECENT ADVANCES IN THE IMPROVEMENT OF INSULIN RESISTANCE BY INTERMITTENT FASTING[J]. Acta Nutrimenta Sinica. 2025, 47(1): 99-104
中图分类号: R151   

参考文献

[1] Lebovitz HE.Insulin resistance: definition and conse-quences[J]. Exp Clin Endocrinol Diabetes, 2001, 109: S135–S148.
[2] Ye J.Mechanism of insulin resistance in obesity: a role of ATP[J]. Front Med, 2021, 15: 372–382.
[3] Lee SH, Park SY, Choi CS.Insulin resistance: from mechanisms to therapeutic strategies[J]. Diabetes Metab J, 2022, 46: 15–37.
[4] Czech MP.Insulin action and resistance in obesity and type 2 diabetes[J]. Nat Med, 2017, 23: 804–814.
[5] Golbidi S, Daiber A, Korac B, et al. Health benefits of fasting and caloric restriction[J]. Curr Diab Rep, 2017, 17: 1–11.
[6] Anton SD, Moehl K, Donahoo WT, et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting[J]. Obesity (Silver Spring), 2018, 26: 254–268.
[7] 王萍萍,肖凌凤,于成丽,等.成人2型糖尿病患者间歇性禁食的研究进展[J].现代预防医学,2021,48:3105–3109.
[8] Harvie MN, Pegington M, Mattson MP, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a ran-domized trial in young overweight women[J]. Int J Obes (Lond), 2011,35: 714–727.
[9] Antoni R, Johnston KL, Collins AL, et al. Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants[J]. Br J Nutr, 2018, 119: 507–516.
[10] Speakman JR, Mitchell SE.Caloric restriction[J]. Mol Aspects Med, 2011, 32: 159–221.
[11] Duszka K, Gregor A, Guillou H, et al. Peroxisome proli-ferator-activated receptors and caloric restriction- common pathways affecting metabolism, health, and lon-gevity[J]. Cells, 2020, 9: 1708.
[12] Schultze SM, Hemmings BA, Niessen M, et al. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis[J]. Expert Rev Mol Med, 2012, 14: e1.
[13] Senesi P, Ferrulli A, Luzi L, et al. Diabetes mellitus and cardiovascular diseases: nutraceutical interven-tions related to caloric restriction[J]. Int J Mol Sci, 2021, 22: 7772.
[14] Santoro A, Martucci M, Conte M, et al. Inflammaging, hormesis and the rationale for anti-aging strategies[J]. Ageing Res Rev, 2020, 64: 101142.
[15] Li Y, Chen Y.AMPK and autophagy[J]. Adv Exp Med Biol, 2019, 1206: 85–108.
[16] Li X.SIRT1 and energy metabolism[J]. Acta Biochim Biophys Sin (Shanghai), 2013, 45: 51–60.
[17] Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions[J]. Nat Med, 2007, 13: 332–339.
[18] Kitada M, Ogura Y, Monno I, et al. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function[J]. Front Endocrinol (Lausanne), 2019, 10: 187–199.
[19] Witczak CA, Sharoff CG, Goodyear LJ.AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cell-ular metabolism[J]. Cell Mol Life Sci, 2008, 65: 3737–3755.
[20] Cao Y, Jiang X, Ma H, et al. SIRT1 and insul in resistance[J]. J Diabetes Complications, 2016, 30: 178–183.
[21] Saha AK, Xu XJ, Balon TW, et al. Insulin resistance due to nutrient excess: is it a consequence of AMPK downregulation?[J]. Cell cycle, 2011, 10: 3447–3451.
[22] Wullschleger S, Loewith R, Hall MN.TOR signaling in growth and metabolism[J]. Cell, 2006, 124: 471–484.
[23] Kezic A, Popovic L, Lalic K. mTOR inhibitor therapy and metabolic consequences: where do we stand?[J]. Oxid Med Cell Longev, 2018,2018:2640342.
[24] Palou A, Remesar X, Arola L, et al. Metabolic effects of short term food deprivation in the rat[J]. Horm Metab Res, 1981, 13: 326–330.
[25] Jeon SM.Regulation and function of AMPK in physiology and diseases[J]. Exp Mol Med, 2016, 48: e245–e245.
[26] Herzig S, Shaw RJ.AMPK: guardian of metabolism and mitochondrial homeostasis[J]. Nat Rev Mol Cell Biol, 2018, 19: 121–135.
[27] Chung S, Yao H, Caito S, et al. Regulation of SIRT1 in cellular functions: role of polyphenols[J]. Arch Bio-chem Biophys, 2010, 501: 79–90.
[28] Sears B, Saha AK.Dietary control of inflammation and resolution[J]. Front Nutr, 2021, 8: 709435.
[29] Shaw RJ.LKB1 and AMP‐activated protein kinase control of mTOR signalling and growth[J]. Acta Physiol (Oxf), 2009, 196: 65–80.
[30] Palou A, Remesar X, Arola L, et al. Metabolic effects of short term food deprivation in the rat[J]. Horm Metab Res, 1981, 13: 326–330.
[31] Oza M J, Laddha AP, Gaikwad AB, et al. Role of dietary modifications in the management of type 2 diabetic complications[J]. Pharmacol Res, 2021, 168: 105602.
[32] Puchalska P, Crawford PA.Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and thera-peutics[J]. Cell Metab, 2017, 25: 262–284.
[33] Volek JS, Noakes T, Phinney SD.Rethinking fat as a fuel for endurance exercise[J]. Eur J Sport Sci, 2015, 15: 13–20.
[34] Varady KA, Hellerstein MK.Do calorie restriction or alternate-day fasting regimens modulate adipose tissue physiology in a way that reduces chronic disease risk?[J]. Nutr Rev, 2008, 66: 333–342.
[35] Chen Y, Wang J, Wang Y, et al. A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex[J]. Nat Commun, 2022, 13: 246–266.
[36] Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism[J]. Nature, 2005, 437: 1109–1114.
[37] Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator /coactivator exchange[J]. Nature, 2008, 456: 269–273.
[38] Purushotham A, Schug TT, Xu Q, et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation[J]. Cell Metab, 2009, 9: 327–338.
[39] Boutant M, Kulkarni SS, Joffraud M, et al. SIRT1 gain of function does not mimic or enhance the adaptations to intermittent fasting[J]. Cell Rep, 2016, 14: 2068–2075.
[40] Shimazu T, Hirschey M D, Hua L, et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production[J]. Cell Metab, 2010, 12: 654–661.
[41] Moro C, Bajpeyi S, Smith SR.Determinants of intra-myocellular triglyceride turnover: implications for insulin sensitivity[J]. Am J Physiol Endocrinol Metab, 2008, 294: E203–E213.
[42] 孙婧瑜,苏亚娟,董静梅.不同生理条件下CD36/LKB1/AMPK信号通路在骨骼肌脂肪酸氧化代谢调控中的作用机制研究[J].中国体育科技,2022,58:82–88.
[43] de Lange P, Farina P, Moreno M, et al. Sequential changes in the signal transduction responses of skeletal muscle following food deprivation[J]. FASEB J, 2006, 20: 2579–2581.
[44] Cantó C, Jiang LQ, Deshmukh AS, et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle[J]. Cell Metab, 2010, 11: 213–219.
[45] Hoppeler H, Baum O, Lurman G, et al. Molecular mechanisms of muscle plasticity with exercise[J]. Compr Physiol, 2011, 1: 1383–412.
[46] Mattson MP.Energy intake and exercise as determinants of brain health and vulnerability to injury and disease[J]. Cell Metab, 2012, 16: 706–722.
[47] van Norren K, Rusli F, van Dijk M, et al. Behavioural changes are a major contributing factor in the reduction of sarcopenia in caloric‐restricted ageing mice[J]. J Cachexia Sarcopenia Muscle, 2015, 6: 253–268.
[48] Gotthardt JD, Verpeut JL, Yeomans BL, et al. Inter-mittent fasting promotes fat loss with lean mass reten-tion, increased hypothalamic norepinephrine content,and increased neuropeptide Y gene expression in diet-induced obese male mice[J]. Endocrinology, 2016, 157: 679–691.
[49] Palacios OM, Carmona JJ, Michan S, et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle[J]. Aging (Albany NY), 2009, 1: 771–783.
[50] Albrecht U.Timing to perfection: the biology of central and peripheral circadian clocks[J]. Neuron, 2012, 74: 246–260.
[51] Johnston JD.Physiological responses to food intake throughout the day[J]. Nutr Res Rev, 2014, 27: 107–118.
[52] Solt LA, Wang Y, Banerjee S, et al. Regulation of cir-cadian behaviour and metabolism by synthetic REV-ERB agonists[J]. Nature, 2012, 485: 62–68.
[53] Paschos GK, Ibrahim S, Song WL, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl[J]. Nat Med, 2012, 18: 1768–1777.
[54] Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism[J]. Mol Metab, 2014, 3: 372–383.
[55] Sadacca LA, Lamia KA, Delemos AS, et al. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice[J]. Diabetologia, 2011, 54: 120–124.
[56] Van Cauter E, Polonsky KS, Scheen AJ.Roles of circadian rhythmicity and sleep in human glucose regulation[J]. Endocr Rev, 1997, 18: 716–738.
[57] Sopowski MJ, Hampton SM, Ribeiro DCO, et al. Post-prandial triacylglycerol responses in simulated night and day shift: gender differences[J]. J Biol Rhythms, 2001, 16: 272–276.
[58] Scheer FAJL, Hilton MF, Mantzoros CS, et al. Adverse metabolic and cardiovascular consequences of circadian misalignment[J]. Proc Natl Acad Sci USA, 2009, 106: 4453–4458.
[59] Stenvers DJ, Scheer FAJL, Schrauwen P, et al. Circadian clocks and insulin resistance[J]. Nat Rev Endocrinol, 2019, 15: 75–89.
[60] Eckel-Mahan KL, Patel VR, De Mateo S, et al. Repro-gramming of the circadian clock by nutritional challenge
[J]. Cell, 2013, 155: 1464–1478.
[61] Kudo T, Akiyama M, Kuriyama K, et al. Night-time restric-ted feeding normalises clock genes and Pai-1 gene expre-ssion in the db/db mouse liver[J]. Diabetologia, 2004, 47: 1425–1436.
[62] Sutton EF, Beyl R, Early KS, et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes[J]. Cell Metab, 2018, 27: 1212–1221.
[63] Zhao Y, Hu X, Liu Y, et al. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway[J]. Mol Cancer, 2017, 16: 1–12.
[64] Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyper-glycemia in humans: role of oxidative stress[J]. Circulation, 2002, 106: 2067–2072.
[65] Kim KH, Kim YH, Son JE, et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeo-stasis via VEGF-mediated alternative activation of macrophage[J]. Cell Res, 2017, 27: 1309–1326.
[66] Ottaviani E, Malagoli D, Capri M, et al. Ecoimmunology: is there any room for the neuroendocrine system?[J]. Bioessays, 2008, 30: 868–874.
[67] Cienfuegos S, Gabel K, Kalam F, et al. Effects of 4- and 6-h time-restricted feeding on weight and cardiometa-bolic health: a randomized controlled trial in adults with obesity[J].Cell Metab, 2020,32: 366–378.
[68] Dandona P, Aljada A, Bandyopadhyay A.Inflammation: the link between insulin resistance, obesity and diabetes[J]. Trends Immunol, 2004, 25: 4–7.
[69] Faris MAE, Madkour MI, Obaideen AK, et al. Effect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals[J].Diabetes Res Clin Pract,2019,153: 166–175.
[70] Lee Y, Kim Y, Lee M, et al. Time-restricted feeding restores obesity-induced alteration in adipose tissue immune cell phenotype[J]. Nutrients,2021,13: 3780.

基金

国家自然科学基金(No.82070861; No. 82004369); 山东省立医院(西格列他钠在肌少症方向的动物研究No.1678778400040)

Accesses

Citation

Detail

段落导航
相关文章

/