[1] Bai C, An H, Wang S, et al. Treatment and prevention of bacterial translocation and endotoxemia with stimulation of the sacral nerve root in a rabbit model of spinal cord injury [J]. Spine, 2011, 36(5): 363-371. [2] Liu C, Li A, Weng YB, et al. Changes in intestinal mucosal immune barrier in rats with endotoxemia[J]. World J Gastroenterol, 2009, 15(46): 5843-5850. [3] Kayama H, Takeda K. Functions of innate immune cells and commensal bacteria in gut homeostasis [J]. J Biochem, 2016, 159(2): 141-149. [4] Dillon A, Lo DD. M cells: Intelligent engineering of mucosal immune surveillance[J]. Front Immunol, 2019, 10: 1499. [5] Albert-Bayo M, Paracuellos I, González-Castro AM, et al. Intestinal mucosal mast cells: Key modulators of barrier function and homeostasis[J]. Cells, 2019, 8(2): 135. [6] Rodriguez-Lagunas MJ, Ferrer R, Moreno JJ. Effect of eicosapentaenoic acid-derived prostaglandin E3 on intestinal epithelial barrier function [J]. Prostaglandins Leukot Essent Fatty Acids, 2013, 88(5): 339-345. [7] Zhang CX, Wang HY, Chen TX. Interactions between intestinal microflora/probiotics and the immune system[J]. Biomed Res Int, 2019: 6764919. [8] Ganal-Vonarburg SC, Duerr CU.The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life[J]. Immunology, 2019, 159(1): 39-51. [9] Haq S, Grondin J, Banskota S, et al. Autophagy: roles in intestinal mucosal homeostasis and inflammation[J]. J Biomed Sci, 2019, 26(1): 19. [10] Yang J, Liu KX, Qu JM, et al. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice [J]. Eur J Pharmacol, 2013, 714(1-3): 120-124. [11] Soderholm AT, Pedicord VA. Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity[J]. Immunology, 2019, 158: 267-280. [12] Bai CH, Ma XL.Ultrastructural study on route of gut bacterial translocation in a rat after spinal cord injury[J]. Chin J Appl Physiol, 2015, 31(6): 561-566. [13] Bain CC, Origin AS. Differentiation, and function of intestinal macrophages[J]. Front Immunol, 2018, 9: 2733. [14] Sousa JR De, Vasconcelos PF DC, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases[J]. Infect Drug Resist, 2019, 12: 2589-2611. [15] Flannigan KL, Geem D, Harusato A, et al. Intestinal antigen-presenting cells key regulators of immune homeostasis and inflammation[J]. Am J Pathol, 2015, 185(7): 1809-1819. [16] López-Santiago R, Sánchez-Argáez AB, Alba-Núnez LGD, et al. Immune response to mucosal brucella infection[J]. Front. Immunol, 2019, 10: 1759. [17] Lee SH, Lee HR, Kwon JY, et al. A20 ameliorates inflammatory bowel disease in mice via inhibiting NF-κB and STAT3 activation[J]. Immunol Lett, 2018, 198: 44-51. [18] Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: Clinical therapeutic implications[J]. Antioxidants, 2019, 8, 164: 1-22. [19] Jarosz M, Olbert M, Wyszogrodzka G, et al. Antioxidant and anti-inflammatory effects of zinc-dependent NF-κB signaling[J]. Inflammopharmacology, 2017, 25: 11-24. [20] Al Nabhani Z, Dietrich G, Hugot JP. Nod2: The intestinal gate keeper[J]. PLoS Pathog, 2017, 13(3): e1006177. [21] Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract[J]. Science, 2005, 307(5710): 731-734. [22] Normand S, Waldschmitt N, Neerincx A, et al. Proteasomal degradation of NOD2 by NLRP12 in monocytes promotes bacterial tolerance and colonization by enteropathogens[J]. Nat Commun, 2018, 9(1): 5338. |