[1] Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte[J]. Physiol Rev, 2003, 83(1): 253-307. [2] Saleem MA, O'Hare MJ, Reiser J, et al. A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression[J]. J Am Soc Nephrol, 2002, 13(3): 630-638. [3] Ozbek E. Induction of oxidative stress in kidney[J]. Int J Nephrol, 2012, 2012: 465897. [4] 陈丽娜, 周 刚, 吴 乐, 等. 力竭运动对大鼠肾脏的影响[J]. 中国康复理论与实践, 2016, 22(7): 789-792. [5] 陈丽娜, 周 刚, 吴 乐, 等. NADPH氧化酶抑制剂apocynin对力竭运动大鼠运动性蛋白尿的影响[J]. 中国应用生理学杂志, 2016, 32(2): 116-120. [6] Zhang R, Harding P, Garvin JL, et al. Isoforms and functions of NAD(P)H oxidase at the macula densa[J]. Hypertension, 2009, 53(3): 556-563. [7] Kondo S, Matsuura S, Ariunbold J, et al. Expression of NADPH oxidase and production of reactive oxygen species contribute to ureteric bud branching and nephrogenesis[J]. J Med Invest, 2019, 66(1.2): 93-98. [8] Yang J, Lane PH, Pollock JS, et al. Protein kinase C-dependent NAD(P)H oxidase activation induced by type 1 diabetes in renal medullary thick ascending limb[J]. Hypertension, 2010, 55(2): 468-473. [9] Diaz-Vegas A, Campos CA, Contreras-Ferrat A, et al. ROS production via P2Y1-PKC-NOX2 is triggered by extracellular ATP after electrical stimulation of skeletal muscle cells[J]. PLoS One, 2015, 10(6): e129882. [10] Wang S X, Mene P, Holthofer H. Nephrin mRNA regulation by protein kinase C[J]. J Nephrol, 2001, 14(2): 98-103. [11] 李 锋, 曹 卉, 曹建民, 等. 虾青素介导Nrf2信号通路对大强度运动诱导大鼠肾脏损伤的保护作用[J]. 山东体育学院学报, 2020, 36(2): 71-78. [12] Kandar R, Stramova X, Drabkova P, et al. A monitoring of allantoin, uric acid, and malondialdehyde levels in plasma and erythrocytes after ten minutes of running activity[J]. Physiol Res, 2014, 63(6): 753-762. [13] 王 岩, 吴任宏, 陶洪涛. 过度运动与肾脏损伤的机制探讨[J]. 现代预防医学, 2013, 40(17): 3303-3306. [14] Hussain S, Romio L, Saleem M, et al. Nephrin deficiency activates NF-kappaB and promotes glomerular injury[J]. J Am Soc Nephrol, 2009, 20(8): 1733-1743. [15] Mundel P, Kriz W. Structure and function of podocytes: an update[J]. Anat Embryol(Berl), 1995, 192(5): 385-397. [16] 牛衍龙, 曹建民, 周海涛, 等. 6周大强度训练对大鼠肾功能的影响及其机制[J]. 中国应用生理学杂志, 2018, 34(1): 65-68. [17] Yang L, Liang M, Zhou Q, et al. Advanced oxidation protein products decrease expression of nephrin and podocin in podocytes via ROS-dependent activation of p38 MAPK[J]. Sci China Life Sci, 2010, 53(1): 68-77. [18] Chen S, Meng XF, Zhang C. Role of NADPH oxidase-mediated reactive oxygen species in podocyte injury[J]. Biomed Res Int, 2013, 2013: 839761. [19] Wang D, Chen Y, Chabrashvili T, et al. Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of afferent arterioles from rabbits infused with angiotensin II[J]. J Am Soc Nephrol, 2003,14(11): 2783-2789. [20] Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease[J]. J Clin Invest, 2000, 106(7): 867-872. [21] Kocer G, Senturk U K, Kuru O, et al. Potential sources of oxidative stress that induce postexercise proteinuria in rats[J]. J Appl Physiol(1985), 2008, 104(4): 1063-1068. [22] 谢文杰, 周 刚, 李鹏飞, 等. 游泳训练对小鼠心肌PKCδ/P66shc蛋白表达的影响[J]. 中国应用生理学杂志, 2021, 37(6): 688-693. [23] 刘 姣, 周 刚, 梅 雨, 等. 一次性力竭运动致大鼠骨骼肌氧化应激的机制[J]. 中国应用生理学杂志, 2020, 36(1): 17-22. [24] Inoguchi T, Nawata H. NAD(P)H oxidase activation: a potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome[J]. Curr Drug Targets, 2005, 6(4): 495-501. [25] Menne J, Meier M, Park JK, et al. Nephrin loss in experimental diabetic nephropathy is prevented by deletion of protein kinase C alpha signaling in-vivo[J]. Kidney Int, 2006,70(8): 1456-1462. |