Please wait a minute...
 
 首页  期刊介绍 编委会 投稿指南 征稿简则 期刊征订 广告服务 留言板 联系我们 English
解放军预防医学杂志  2016, Vol. 34 Issue (6): 879-883    
  研究论著 本期目录 | 过刊浏览 | 高级检索 |
基于机器学习的结直肠癌血清标志物筛选及早期诊断模型评估
郗 群, 毛文虹
兰州大学第二医院信息中心, 兰州 730030
ML-based Colorectal Cancer Serum Tumor Marker Screening and Evaluation of Early Stage Diagnostic Models
XI Qun, MAO Wenhong
Information Centre, Second Hospital of Lanzhou University,Lanzhou,Gansu Province,730030,China
全文: PDF(4803 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 提高结直肠癌患者的早期诊断率,帮助结直肠癌患者及早发现病情获得最佳治疗效果(治疗早期直肠癌能达到超过90%的五年存活率)。方法 在机器学习理论和实践的基础上,提出了采用向前法作逐步逻辑回归(Logistic Regression, LR)分析筛选出最具有诊断参考性的血清标志物,并利用支持向量机(Support Vector Machine,SVM)与后向传播(Back Propagation,BP)神经网络等模型建立结直肠癌早期诊断模型的方法。结果 实验结果显示CEA、CA1724、CA242、CA153和HSP60 这5种肿瘤标志物对结直肠癌均有一定的诊断价值, 该五种肿瘤标志物LR模型联合检测效果明显高于五种肿瘤标志物任一指标。 结论 联合检测有助于提高结直肠癌检测的灵敏度,而且基于LR建立的结直肠癌检测模型相较于基于SVM建立的模型具有更高的诊断价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 特征选择 特征分类 逻辑回归 支持向量机 后向传播神经网络 结直肠癌    
AbstractObjective To improve the early diagnostic rate of colorectal cancer in order to have colorectal cancer patients diagnosed as early as possible for the best treatment result. Methods Based on the Machine Learning theory and practices, the forward method was adopted inlogistic regression(LR)in order to analyze and screen the serum marker of the best referential value. Support Vector Machine (SVM)and Back Propagation (BP)were used to establish an early diagnostic model for colorectal cancer. Results The experiment results showed that such serum markers as CEA、CA1724、CA242、CA153 and HSP60 were of diagnostic valuefor colorectal cancer. The LR colorectal cancer diagnostic model that combined the above mentioned five types of serum markers outperformed that of each individual serum marker. Conclusion Combined tests can enhance the detection sensitivity to colorectal cancer. The LR colorectal cancer diagnostic model has a higher diagnostic value than the model based on SVM.
Key wordsfeature selection    feature classification    logistic regression    Support Vector Machine    back propagation neural network    colorectal cancer.
收稿日期: 2016-02-28      出版日期: 2017-01-05
引用本文:   
郗 群, 毛文虹. 基于机器学习的结直肠癌血清标志物筛选及早期诊断模型评估[J]. 解放军预防医学杂志, 2016, 34(6): 879-883.
XI Qun, MAO Wenhong. ML-based Colorectal Cancer Serum Tumor Marker Screening and Evaluation of Early Stage Diagnostic Models. Journal of Preventive Medicine of Chinese People's Liberation Army, 2016, 34(6): 879-883.
链接本文:  
http://manu37.magtech.com.cn/Jwk_jsyxkx/jfj/CN/      或      http://manu37.magtech.com.cn/Jwk_jsyxkx/jfj/CN/Y2016/V34/I6/879
[1] LEPORRIER J,MAUREL J,CHICHE L,et al.A population‐based study of the incidence,management and prognosis of hepatic metastases from colorectal cancer[J].British Journal of Surgery,2006,93(4):465.
[2] SINGH H,NUGENT Z,DEMERS A A,et al.The reduction in colorectal cancer mortality after colonoscopy varies by site of the cancer[J].Gastroenterology,2010,139(4):1128.
[3] GANEPOLA G A,NIZIN J,RUTLEDGE J R,et al.Use of blood-based biomarkers for early diagnosis and surveillance of colorectal cancer[J].World J Gastrointest Oncol,2014,6(4):83.
[4] TIAN M F.The clinical value of the detections of CA199,CA125,CA153 and CEA in malignant tumors[J].Journal of Clinical & Experimental Medicine,2010,4630:243.
[5] BASSI C,SALVIA R,GUMBS A A,et al.The value of standard serum tumor markers in differentiating mucinous from serous cystic tumors of the pancreas:CEA,Ca 19-9,Ca 125,Ca 15-3.[J].Langenbeck S Archives of Surgery,2002,387(7-8):281.
[6] STURGEON C.Practice guidelines for tumor marker use in the clinic.[J].Clinical Chemistry,2002,48(8):1151.
[7] 李锦洲,盛家和,陈光意.肿瘤标志物检测在消化系统肿瘤诊断中作用[J].医药论坛杂志,2005,26(14):25.
[8] 原新红,田亚平,郭广宏.血清肿瘤标志物联合检测的评价[J].军医进修学院学报,2005,26(5):350.
[9] 邵文.血清肿瘤标志物联合检测对胃癌诊断的方案优化[J].中国社区医师:医学专业,2011,13(18):206.
[10] JUNTERMANNS B,RADUNZ S,HEUER M,et al.Tumor markers as a diagnostic key for hilar cholangiocarcinoma[J].European Journal of Medical Research,2010,15(8):357.
[11] SUNG J J Y,LAU J Y W,YOUNG G P,et al.An updated Asia Pacific Consensus Recommendations on colorectal cancer screening.[J].Gut,2015,64(57):1166.
[12] MEHTA J,PRABHU R,ESHPUNIYANI P,et al.Evaluating the efficacy of tumor markers CA19-9 and CEA to predict operability and survival in pancreatic malignancies[J].Tropical Gastroenterology Official Journal of the Digestive Diseases Foundation,2010,31(3):421.
[13] GEBAUER G,MULLER R W.Tumor marker concetratios innormal and malignant tissues of colorectal cancer patients and their prognostic relevance[J].Anticancer Res,1997,17(9):2939.
[14] 朱玉琨,瞿良,袁荣国,等.大肠癌患者血清CA242、CA19-9和CEA水平测定的临床意义[J].肿瘤研究与临床,2004,16(4):227.
[15] 张力,何元兵,刘挺,等.肿瘤标志物在肺部恶性肿瘤诊断中的意义[J].中国癌症杂志,2001,11(6):510.
[16] 陈涛,苏秀馨,全松,等.血清SGF与CEA、AFP、NSE、CA125在恶性肿瘤临床诊断中的对比研究[C].中华医学会第七次全国检验医学学术会议,2008.
[17] 戴鹏.血清肿瘤标志物测定在结直肠癌中的意义[D].山西医科大学,2008.
[18] 杜卫东,唐健雄,杨俭英,等.大肠癌血清肿瘤标志物联合测定的临床研究[J].结直肠肛门外科,2003,9(2):83.
[19] BAGARIA B,SOOD S,SHARMA R,et al.Comparative study of CEA and CA19-9 in esophageal,gastric and colon cancers individually and in combination(ROC curve analysis)[J].Cancer Biology & Medicine,2013,10(3):148.
[20] 顾平,黄钢,韩源.Logistic 回归和 ROC 曲线分析多种肿瘤标志物在结直肠癌中的诊断价值[J].放射免疫学杂志,2007,20(3):202.
[21] 余捷凯,杨美琴,姜铁军,等.血清肿瘤标志物优化组合人工神经网络模型在大肠癌诊断中的应用[J].浙江大学学报:医学版,2004,33(5):407.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《解放军预防医学杂志》编辑部
地址:天津市和平区大理道1号,邮编:300050  电话:022-84655185  E-mail:JYYX@chinajournal.net.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn