目的 探讨急性高原不同暴露时间对小鼠食欲和肠道菌群的影响。方法 随机将30只7~8 w龄SPF级C57BL/6J雄性小鼠分为3组,每组10只,设置为平原对照组(P组)、急性高原1 d组(G1组)、急性高原7 d组(G7组)。其中,P组始终处于动物房喂养;G7组在实验开始后立即转移至高原环境模拟舱中(模拟海拔5 000 m)直至实验结束;G1组则在动物房喂养3 d后转移至高原环境模拟舱中(模拟海拔5 000 m)1 d。实验过程中每日称量小鼠体重和饲料质量并记录;环境模拟结束时,使用冻存管收集小鼠粪便,摘除眼球采血法采集小鼠血液并分离血清。使用ELISA试剂盒测定小鼠血清神经肽Y(neuropeptide Y,NPY)、酪酪肽(peptides YY,PYY)等食欲激素含量。小鼠粪便样本进行DNA抽提后,选择16S rRNA可变区中的V3-V4区域进行PCR扩增,并进行DNA测序分析和功能分类注释。结果 急进高原后,小鼠血清PYY含量升高、NPY含量下降;其中,G1组与P组差异性有统计学意义(P<0.05)。急进高原后的低压缺氧环境影响小鼠的肠道菌群多样性构成,双歧杆菌属(Bifidobacterium)等益生菌的相对丰度下降,肠球菌属(Enterococcus)等菌属相对丰度上升;COG基因功能注释结果显示小鼠肠道菌群中碳水化合物、氨基酸以及能量代谢对应的功能特征丰度均较高。结论 急性高原暴露对小鼠食欲有明显抑制作用,且对小鼠肠道菌群多样性构成产生影响。
Abstract
Objective To explore the effect of different acute high-altitude exposure durations on appetite and intestinal flora in mice. Methods Thiry SPF C57BL/6J male mice aged 7-8 weeks were randomly divided into 3 groups, with 10 mice in each group: plain control group (group P), acute plateaus 1 day group (group G1), and acute plateaus 7 days group (group G7). Among them, Group G7 was transferred to the plateau environment simulation cabin (simulated altitude of 5 000 m) immediately after the experiment began until the experiment ended. Group P was fed in the plain animal house. Group G1 was fed in the plain animal house for 3 days, and then transferred to the simulated cabin of plateau environment (simulated altitude of 5 000 m) for 1 day. During the experiment, the body weight and food intake were recorded every day. At the end of the environmental simulation, feces samples were collected into freezing tube, and blood samples were collected from orbital vein and serum was separated. The contents of NPY and PYY in the serum were determined by ELISA kits. After DNA extraction from mouse feces samples, the V3-V4 region in the variable region of 16S rDNA was selected for PCR amplification, DNA sequencing analysis and functional classification annotation. Results The acute plateaus exposure obviously inhibited the appetite of mice, and at the same time caused the weight loss. After entering the plateau, serum content of PYY increased and the NPY decreased. Among them, there was a significant difference between the group G1 and the group P (P<0.05). The low-pressure hypoxia exposure affected the composition of intestinal flora diversity in mice. The relative abundance of probiotics such as Bifidobacterium decreased, while the relative abundance of Enterococcus increased. The functional annotation results of COG gene showed that the functional characteristics of carbohydrates, amino acids and energy metabolism in the intestinal flora were increased. Rapid entry into the plateau environment adversely affected the generation and transformation of energy in intestinal flora and the expression of related genes such as biosynthesis, transport and catabolism of secondary metabolites. Conclusion Acute high-altitude exposure significantly suppresses the appetite and affected the composition of intestinal flora diversity.
关键词
急性高原 /
小鼠 /
食欲 /
肠道菌群 /
神经肽Y /
酪酪肽
Key words
acute plateaus /
mice /
appetite /
intestinal flora /
neuropeptide Y /
peptides YY
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 霍妍, 赵安鹏, 李雪, 等. 急性高原病的动物模型研究现状[J]. 中国药理学通报,2021,37:26–30.
[2] 田学敏, 贾雍, 张百珂. 某部急进藏区官兵眼底出血状况调查与分析[J].人民军医,2018,61:298–300.
[3] 潘庆庆. 急性高原病的病理生理机制研究进展[J]. 西北国防医学杂志,2017,38:68–70.
[4] 杨定周. 高原缺氧致胃肠粘膜屏障损伤及其与多器官功能障碍综合征的关系[D].重庆:第三军医大学,2009.
[5] 田秀灵, 糜漫天. 高原急性低氧对大鼠食欲及下丘脑神经肽Y表达的影响[J].营养学报,2006,28:113–115.
[6] 汪冬. 急性缺氧大鼠食欲降低机制的初步研究[D]. 重庆: 第三军医大学,2016.
[7] 白宇, 胡云霞, 方南元, 等. 肠道菌群的食欲调节作用研究进展[J]. 医学研究生学报,2017,30:100–103.
[8] 马燕, 马爽, 尚春香, 等. 低氧暴露对大鼠肠道微生物群落的影响[J].微生物学通报,2019,46:120–129.
[9] Claesson MJ, Wang Q, O'Sullivan O, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions[J]. Nucleic Acids Res,2010,38:e200.
[10] Chen S, Zhou Y, Chen Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018, 34:i884–i890.
[11] Mago T, Salzberg SL.FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics,2011,27:2957–2963.
[12] Callahan BJ, Mcmurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J].Nat Methods,2016,13:581–583.
[13] Zhang HL, Carnevale G, Polese B, et al. CD109 restrains activation of cutaneous IL-17-producing γδ T cells by commensal microbiota[J]. Cell Rep, 2019, 29: 391–405.
[14] Liu B, Chen J, Zhang L, et al. IL-10 dysregulation in acute mountain sickness revealed by transcriptome analysis[J].Front Immunol,2017,8:628.
[15] Wu Y, Zhang C, Chen Y, et al. Association between acute mountain sickness (AMS) and age: a meta-analysis[J]. Mil Med Res, 2018, 5: 14.
[16] 谢亚磊. 模拟海拔5500米环境对雄性SD大鼠HPT轴和肠道菌群的影响[D].北京: 北京协和医学院,2019.
[17] 郑建华,法云智,董巧燕,等. 高原急性缺氧肠道应激损伤小鼠模型的构建与评价[J]. 实验动物与比较医学,2024, 44: 31-41.
[18] 宋璨. 基于宏基因组序列的黑熊肠道微生物组的应用基础研究[D]. 重庆: 重庆大学, 2017.
[19] Brulc JM, Antonopoulos DA, Miller ME, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases[J]. Proc Natl Acad Sci USA, 2009, 106: 1948–1953.
[20] Roxas JL, Viswanathan VK.Modulation of intestinal paracellular transport by bacterial pathogens[J]. Compr Physiol, 2018, 8: 823.
[21] Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites[J]. Proc Natl Acad Sci USA, 2009,106:3698–3703.
[22] Roshchina VV.Evolutionary considerations of neurotran-smitters in microbial, plant, and animal cells[M]// Lyte M,Freestone PPE. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. New York:Springer,2010:17–52.
[23] Li X, Wu S, Chen X, et al. Inulin promotes appetite in mice by regulating the gut microbiota under conditions of rapid entry to the plateau[J]. PLoS One, 2025, 20: e322059.