锌受体GPR39在抑郁发生发展中的作用及机制

李晨琪, 苗根, 卢宏涛, 汤雨潇, 沈慧

营养学报 ›› 2025, Vol. 47 ›› Issue (4) : 397-400.

PDF(1016 KB)
PDF(1016 KB)
营养学报 ›› 2025, Vol. 47 ›› Issue (4) : 397-400.
综述

锌受体GPR39在抑郁发生发展中的作用及机制

  • 李晨琪1,2, 苗根1, 卢宏涛1, 汤雨潇1, 沈慧1
作者信息 +

ROLE OF ZINC RECEPTOR GPR39 IN DEPRESSION DEVELOPMENT

  • LI Chen-qi1,2, MIAO Gen1, LU Hong-tao1, TANG Yu-xiao1, SHEN Hui1
Author information +
文章历史 +

摘要

抑郁症为最常见的精神疾病,锌离子是迄今为止唯一确定的G蛋白偶联受体39(G protein-coupled receptor 39, GPR39)的内源性配体。GPR39在神经系统中广泛分布,近年研究显示,锌及其受体GPR39与抑郁症之间存在紧密的关联,GPR39的异常表达和功能改变可影响神经递质的平衡和神经可塑性,并进而影响抑郁的发生和发展,GPR39的激动剂在抑郁症防治中显示出一定的潜在应用价值。

Abstract

Depression is one of the most common mental disorders. Zinc is the only identified endogenous ligand for G protein-coupled receptor 39 (GPR39) to date. GPR39 is widely distributed in the nervous system. Recent studies have shown a close association between zinc and its receptor GPR39 and depression. Abnormal expression and functional changes of GPR39 can affect neurotransmitter balance and neural plasticity, thereby influencing the development of depression. Agonists of GPR39 have shown certain potential application value in the prevention and treatment of depression.

关键词

GPR39 / / 抑郁

Key words

G protein-coupled receptor 39 (GPR39) / zinc / depression

引用本文

导出引用
李晨琪, 苗根, 卢宏涛, 汤雨潇, 沈慧. 锌受体GPR39在抑郁发生发展中的作用及机制[J]. 营养学报. 2025, 47(4): 397-400
LI Chen-qi, MIAO Gen, LU Hong-tao, TANG Yu-xiao, SHEN Hui. ROLE OF ZINC RECEPTOR GPR39 IN DEPRESSION DEVELOPMENT[J]. Acta Nutrimenta Sinica. 2025, 47(4): 397-400
中图分类号: R153.9   

参考文献

[1] Kverno KS, Mangano E.Treatment-resistant depression: approaches to treatment[J]. J Psychosoc Nurs Ment Health Serv, 2021, 59: 7–11.
[2] Mckee KK, Tan CP, Palyha OC, et al. Cloning and characterization of two human G protein-coupled receptor genes (GPR38 and GPR39) related to the growth hormone secretagogue and neurotensin receptors[J]. Genomics, 1997, 46: 426–434.
[3] Davis CM, Bah TM, Zhang WH, et al. GPR39 localization in the aging human brain and correlation of expression and polymorphism with vascular cognitive impairment[J]. Alzheimers Dement (NY), 2021, 7: e12214.
[4] Laitakari A, Liu L, Frimurer TM, et al. The zinc-sensing receptor GPR39 in physiology and as a pharmacological target[J]. Int J Mol Sci, 2021, 22: 3872.
[5] Xu Y, Barnes AP, Alkayed NJ.Role of GPR39 in neurovascular homeostasis and disease[J]. Int J Mol Sci, 2021, 22: 8200.
[6] Joe P, Getz M, Redman S, et al. Serum zinc levels in acute psychiatric patients: a case series[J]. Psychiatry Res, 2018, 261: 344–350.
[7] Dos Santos AB, Bezerra MA, Rocha ME, et al. Higher zinc concentrations in hair of Parkinson's disease are associated with psychotic complications and depression[J]. J Neural Transm (Vienna), 2019, 126: 1291–1301.
[8] Yosaee S, Clark CCT, Keshtkaran Z, et al. Zinc in depression: From development to treatment: a comparative/dose response meta-analysis of observational studies and randomized controlled trials[J]. Gen Hosp Psychiatry, 2022, 74: 110–117.
[9] da Silva LEM, de Santana MLP, Costa PRF, et al. Zinc supplementation combined with antidepressant drugs for treatment of patients with depression: a systematic review and meta-analysis[J]. Nutr Rev, 2021, 79: 1–12.
[10] Mlyniec K, Doboszewska U, Szewczyk B, et al. The involvement of the GPR39-Zn(2+)-sensing receptor in the pathophysiology of depression. Studies in rodent models and suicide victims[J]. Neuropharmacology, 2014, 79: 290–297.
[11] Mlyniec K, Budziszewska B, Reczynski W, et al. The role of the GPR39 receptor in zinc deficient-animal model of depression[J]. Behav Brain Res, 2013, 238: 30–35.
[12] Mlyniec K, Nowak G.GPR39 up-regulation after selective antidepressants[J]. Neurochem Int, 2013, 62: 936–939.
[13] Ding Q, Li H, Tian X, et al. Zinc and imipramine reverse the depression-like behavior in mice induced by chronic restraint stress[J]. J Affect Disord, 2016, 197: 100–106.
[14] Siodlak D, Doboszewska U, Nowak G, et al. Investigating the role of GPR39 in treatment of stress-induced depression and anxiety[J]. Psychopharmacology (Berl), 2025, 242: 1377–1406.
[15] Szewczyk B, Poleszak E, Wlaz P, et al. The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test[J]. Prog Neuropsychophar-macol Biol Psychiatry, 2009, 33: 323–329.
[16] Borroto-Escuela DO, Carlsson J, Ambrogini P, et al. Understanding the role of GPCR heteroreceptor complexes in modulating the brain networks in health and disease[J]. Front Cell Neurosci, 2017, 11: 37.
[17] Smith ALW, Harmer CJ, Cowen PJ, et al. The serotonin 1A (5-HT(1A)) receptor as a pharmacological target in depression[J]. CNS Drugs, 2023, 37: 571–585.
[18] Duval F, Mokrani M, Erb A, et al. Thyroid axis activity and dopamine function in depression[J]. Psychoneuroen-docrinology, 2021, 128: 105219.
[19] Mlyniec K, Gawel M, Librowski T, et al. Investigation of the GPR39 zinc receptor following inhibition of monoaminergic neurotransmission and potentialization of glutamatergic neurotransmission[J]. Brain Res Bull, 2015, 115: 23–29.
[20] Starowicz G, Siodlak D, Nowak G, et al. The role of GPR39 zinc receptor in the modulation of glutamatergic and GABAergic transmission[J]. Pharmacol Rep, 2023, 75: 609–622.
[21] Fan Y, Luan X, Wang X, et al. Exploring the association between BDNF related signaling pathways and depression: a literature review[J]. Brain Res Bull, 2025, 220: 111143.
[22] Guan W, Xu D, Ji C, et al. Hippocampal miR-206-3p participates in the pathogenesis of depression via regulating the expression of BDNF[J]. Pharmacol Res, 2021, 174: 105932.
[23] Pelosof R, Santos LAD, Farhat LC, et al. BDNF blood levels after electroconvulsive therapy in patients with mood disorders: an updated systematic review and meta-analysis[J]. World J Biol Psychiatry, 2023, 24:24–33.
[24] Duman RS, Deyama S, Fogaca MV.Role of BDNF in the pathophysiology and treatment of depression: activity-dependent effects distinguish rapid-acting antidepressants[J]. Eur J Neurosci, 2021, 53: 126–139.
[25] Wang Y, Liang J, Xu B, et al. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury[J]. Life Sci, 2024, 336: 122282.
[26] Kowianski P, Lietzau G, Czuba E, et al. BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity[J]. Cell Mol Neurobiol, 2018, 38: 579–593.
[27] Tang Y, Yang J, Ye C, et al. miR-182 mediated the inhibitory effects of NF-κB on the GPR39/CREB/BDNF pathway in the hippocampus of mice with depressive-like behaviors[J]. Behav Brain Res, 2022, 418: 113647.
[28] Mlyniec K.Interaction between zinc, GPR39, BDNF and neuropeptides in depression[J]. Curr Neuropharmacol, 2021, 19: 2012–2019.
[29] Mlyniec K, Nowak G.Up-regulation of the GPR39 Zn2+-sensing receptor and CREB/BDNF/TrkB pathway after chronic but not acute antidepressant treatment in the frontal cortex of zinc-deficient mice[J]. Pharmacol Rep, 2015, 67: 1135–1140.
[30] Mo F, Tang Y, Du P, et al. GPR39 protects against corticosterone-induced neuronal injury in hippocampal cells through the CREB-BDNF signaling pathway[J]. J Affect Disord, 2020, 272: 474–484.
[31] Mlyniec K, Starowicz G, Gawel M, et al. Potential antidepressant-like properties of the TC G-1008, a GPR39 (zinc receptor) agonist[J]. J Affect Disord, 2016, 201: 179–184.
[32] Starowicz G, Jarosz M, Frackiewicz E, et al. Long-
lasting antidepressant-like activity of the GPR39 zinc receptor agonistTC-G 1008[J]. J Affect Disord, 2019, 245: 325–334.
[33] Sato S, Huang X, Kroeze WK, et al. Discovery and characterization of novel GPR39 agonists allosterically modulated by zinc[J]. Mol Pharmacol, 2016, 90: 726–737.
[34] Grunddal K V, Diep T A, Petersen N, et al. Selective release of gastrointestinal hormones induced by an orally active GPR39 agonist[J]. Mol Metab, 2021, 49: 101207.

基金

上海市“科技创新行动计划”启明星扬帆专项(No.24YF2758300); 上海市公共卫生研究专项青年项目(No.2024GKQ26); 上海市嘉定区自然科学研究课题(No.JDKW-2024-0013); 海军军医大学第三附属医院科学研究培育项目(2025QN09); 国家自然科学基金(No.81573150)

PDF(1016 KB)

Accesses

Citation

Detail

段落导航
相关文章

/