[1] Musso CG, Jauregui JR. How to differentiate renal senescence from chronic kidney disease in clinical practice[J]. Postgrad Med, 2016, 128(7): 716-721.
[2] Irie J, Itoh H. Aging and homeostasis. Age-associated diseases and clinical application of NMN(Nicotinamide Mononucleotide)[J]. Clinical calcium, 2017, 27(7): 983-990.
[3] Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis[J]. J Am Soc Nephrol, 2010, 21(11): 1819-1834.
[4] 张伟光, 贾林沛, 白雪源. 肾脏衰老的功能变化及发生机制[J]. 老年医学与保健, 2016, 22(6): 329-331.
[5] 王 倩, 梁 艳, 杨胜楠, 等. 细胞衰老在老年小鼠急性肾损伤慢性化中的作用与机制研究[J]. 中华肾脏病杂志, 2018, 34(1): 44-51.
[6] 张继彬, 马 赛, 范 利, 等. 去乙酰化酶Sirtuins和细胞衰老与动脉粥样硬化的研究进展[J]. 中华老年多器官疾病杂志, 2018, 17(5): 378-382.
[7] 冯子奕, 李雪蕊 , 陈 龙, 等. T16Ainh-A01 对耳蜗血管纹毛细血管内皮细胞凋亡及衰老的影响[J]. 中国应用生理学杂志, 2020, 36(5): 385-389.
[8] Ben Y, Hao J, Zhang Z, et al. Astragaloside IV inhibits mitochondrial-dependent apoptosis of the Dorsal root ganglion in diabetic peripheral neuropathy rats through modulation of the SIRT1/p53 signaling pathway[J]. Diabetes Metab Syndr Obes, 2021, 14(14): 1647-1661.
[9] Okamura DM, Pennathur S. The balance of powers: Redox regulation of fibrogenic pathways in kidney injury[J]. Redox Biol, 2015, 12(6): 495-504.
[10] Carrero JJ, Hecking M, Ulasi I, et al. Chronic kidney disease, gender, and access to care: A global perspective[J]. Semin Nephrol, 2017, 37(3): 296-308.
[11] Borghesan M, Hoogaars WMH, Varela-Eirin M, et al. A senescence-centric view of aging: Implications for longevity and disease[J]. Trends Cell Biol, 2020, 30(10): 777-791.
[12] Herranz N, Gil J. Mechanisms and functions of cellular senescence[J]. J Clin Invest, 2018, 128(4): 1238-1246.
[13] Kadota T, Fujita Y, Yoshioka Y, et al. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype: Insights into the pathophysiology of lung diseases[J]. Mol Aspects Med, 2018, 60(4): 92-103.
[14] Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Commun, 2017, 23(8): 14532.
[15] Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype[J]. Cell Metab, 2016, 23(2): 303-314.
[16] 孙伟铭, 张源洲, 温 馨, 等. 外源性H2S恢复缺氧后适应对衰老H9C2细胞的保护作用及机制[J]. 中国应用生理学杂志,2018, 34(4): 289-293.
[17] 尚书英. 黄芪甲苷对辐射诱导脑细胞抗衰老机理的初探[D]. 兰州大学, 2019.
[18] Chen Q, Sun X, Luo X, et al. PIK3R3 inhibits cell senescence through p53/p21 signaling[J]. Cell Death Dis, 2020, 11(9): 798.
[19] Yamada K, Yoshida K. Mechanical insights into the regulation of programmed cell death by p53 via mitochondria[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(5): 839-848.
[20]Chen C, Zhou M, Ge Y, et al. SIRT1 and aging related signaling pathways[J]. Mech Ageing Dev, 2020, 187(4): 111215.
[21] Johmura Y, Sun J, Kitagawa K, et al. SCF(Fbxo22)-KDM4A targets methylated p53 for degradation and regulates senescence[J]. Nat Commun, 2016, 12(7): 10574.
[22] Zhou H, Du W, Li Y, et al. Effects of melatonin on fatty liver disease: The role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy[J]. J Pineal Res, 2018, 64(1): 12450.
[23] Zhang Y, Yang X, Ge X, et al. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice[J]. Biomed Pharmacother, 2019, 109(5): 726-733.
[24] Kreis NN, Sanhaji M, Rieger MA, et al. p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells[J]. Oncogene, 2014, 33(50): 5716-5728.
[25] Li C, Xie N, Li Y, et al. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation[J]. Free Radic Biol Med, 2019, 130(1): 512-527. |