[1] Toba J, Nikkuni M, Ishizeki M, et al. PPARgamma agonist pioglitazone improves cerebellar dysfunction at pre-Abeta deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice[J]. Biochem Biophys Res Commun, 2016, 473(4):1039-1044. [2] Mattson MP, Guo Q. Cell and molecular neurobiology of presenilins:a role for the endoplasmic reticulum in the pathogenesis of Alzheimer's disease[J]? J Neurosci Res, 1997, 50(4):505-513. [3] 郝明, 仝嘉庆, 张军, 等. 雷帕霉素对淀粉样β蛋白所致大鼠工作记忆和突触可塑性损伤的作用观察[J]. 中国应用生理学杂志, 2016, 32(1):18-21. [4] 杨菊, 张军, 原丽, 等. 双受体激动剂CI-1206拮抗Aβ1-42所致小鼠空间学习记忆损伤的作用[J]. 中国应用生理学杂志, 2016, 32(6):567-570. [5] Nimmrich V, Ebert U. Is Alzheimer's disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid[J]. Rev Neurosci, 2009, 20(1):1-12. [6] Gordon N. The cerebellum and cognition[J]. Eur J Paediatr Neurol, 2007, 11(4):232-234. [7] Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome[J]. Brain, 1998, 121(Pt 4):561-579. [8] Fukutani Y, Cairns NJ, Rossor MN, et al. Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer's disease[J]. Neurosci Lett, 1996, 214(1):33-36. [9] Kuwabara Y, Ishizeki M, Watamura N, et al. Impairments of long-term depression induction and motor coordination precede Abeta accumulation in the cerebellum of APPswe/PS1dE9 double transgenic mice[J]. J Neurochem, 2014, 130(3):432-443. [10] Hoxha E, Boda E, Montarolo F, et al. Excitability and synaptic alterations in the cerebellum of APP/PS1 mice[J]. PloS One, 2012, 7(4):e34726. [11] Pan W, Han S, Kang L, et al. Effects of dihydrotestosterone on synaptic plasticity of the hippocampus in mild cognitive impairment male SAMP8 mice[J]. Exp Ther Med, 2016, 12(3):1455-1463. [12] Real CC, Garcia PC, Britto LR, et al. Different protocols of treadmill exercise induce distinct neuroplastic effects in rat brain motor areas[J]. Brain Res, 2015, 1624:188-198. [13] Duffy AM, Holscher C. The incretin analogue D-Ala2GIP reduces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer's disease[J]. Neuroscience, 2013, 228:294-300. [14] Freeman JH. Cerebellar learning mechanisms[J]. Brain Res, 2015, 1621:260-269. [15] Webster SJ, Bachstetter AD, Nelson PT, et al. Using mice to model Alzheimer's dementia:an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models[J]. Front Genet, 2014, 5:88. [16] Purushothuman S, Johnstone DM, Nandasena C, et al. Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia[J]. Neuroscience letters, 2015, 591:155-159. [17] Bodranghien F, Bastian A, Casali C, et al. Consensus paper:revisiting the symptoms and signs of cerebellar syndrome[J]. Cerebellum, 2016, 15(3):369-391. [18] Chen AI, Zang K, Masliah E, et al. Glutamatergic axon-derived BDNF controls GABAergic synaptic differentiation in the cerebellum[J]. Sci Rep, 2016, 6:20201. [19] Carter AR, Chen C, Schwartz PM, et al. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure[J]. J Neurosci, 2002, 22(4):1316-1327. |