姜黄素对密闭环境危害因素所致小鼠睡眠障碍的改善作用

张晨阳, 边祥雨, 王锋, 虞立霞, 郭长江, 姚站馨

营养学报 ›› 2025, Vol. 47 ›› Issue (2) : 185-190.

PDF(3356 KB)
PDF(3356 KB)
营养学报 ›› 2025, Vol. 47 ›› Issue (2) : 185-190.
论著

姜黄素对密闭环境危害因素所致小鼠睡眠障碍的改善作用

  • 张晨阳1,2, 边祥雨2, 王锋2, 虞立霞2, 郭长江1,2, 姚站馨2
作者信息 +

CURCUMIN IMPROVES SLEEP DISORDER IN MICE EXPOSED TO THE CONFINED ENVIRONMENT

  • ZHANG Chen-yang1,2, BIAN Xiang-yu2, WANG Feng2, YU Li-xia2, GUO Chang-jiang1,2, YAO Zhan-xin2
Author information +
文章历史 +

摘要

目的 探究姜黄素对密闭环境条件下小鼠睡眠障碍的干预作用。方法 将36只昆明雄性小鼠随机分为对照组(CON组)、模型组(M组)、姜黄素组(J组)。CON组在动物房常规条件下饲养;M组和J组在生物节律箱设定光照条件下施加束缚4 h,光照条件为:前3 d与CON组光照时间相反,第4 d至第6 d与CON组光照时间相同,6d为一个循环,J组每日灌胃100 mg/ (kg·bw)姜黄素,CON组、M组给予等量生理盐水。小鼠干预30 d后实验结束,采用腹腔注射戊巴比妥钠进行小鼠诱导睡眠实验,记录睡眠潜伏期及睡眠时间;处死后取血清及下丘脑组织,酶联免疫吸附法(ELISA)测定小鼠血清中的皮质醇(CORT)、促肾上皮质激素释放激素(CRH)、促肾上腺皮质激素(ACTH)以及下丘脑组织中的5-羟色胺(5-HT)、多巴胺(DA)等指标,并用RT-qPCR检测下丘脑相关时钟基因表达。结果 在戊巴比妥钠诱导小鼠睡眠试验中,姜黄素可显著缩短睡眠潜伏期(P<0.01),延长睡眠时间(P<0.01)。血清相关激素含量测定结果表明,与M组相比,姜黄素可显著降低CORT、ACTH、CRH含量(P<0.01,P<0.05)。在下丘脑相关神经递质含量测定中,与M组相比,J组5-HT含量显著增加(P<0.01),DA含量显著降低(P<0.05)。与M组相比,姜黄素具有调节生物节律基因(Clock、Bmal1、Per1、Per2、Per3、Cry1、Cry2、Rev-erbα/β)基因表达振幅的作用。结论 姜黄素可能通过影响相关生物节律基因表达,调节血清相关激素及神经递质水平,使其趋于恢复,从而发挥改善睡眠障碍的作用。

Abstract

Objective To investigate the effect of curcumin on sleep disorder in mice exposed to confined environmental conditions. Methods Thirty-six male KM mice were randomly assigned to the control group (CON), model group (M), and curcumin group (J). The CON group was kept under the usual conditions in the animal house. The M group and J group were restrained for 4h in a biorhythm box under the altered light condition. The light condition in one cycle was as follows: the light time was opposite to that of the CON group in the first 3d, and returned to the normal from the 4th to the 6th. Group J was given 100 mg/ (kg·bw) curcumin by gavage daily, group con and M was given an equal amount of saline.The experiment lasted for 30 d. The mice were injected intraperitoneally with sodium pentobarbital to induce sleep, and the sleep latency and duration were recorded. Finally mice were sacrificed and the serum and hypothalamus tissues were taken. The contents of cortisol (CORT), corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) in serum and 5-hydroxytryptamine (5-HT) and dopamine (DA) in hypothalamus tissues were measured by enzyme-linked immunosorbent assay (ELISA). The expressions of hypothalamus-associated clock genes were detected by RT-qPCR. Results The results of the sodium pentobarbital-induced sleep test showed that curcumin significantly shortened sleep latency (P<0.01) and prolonged sleep time (P<0.01). Meanwhile curcumin significantly reduced serum CORT, ACTH, and CRH levels compared with the group M (P<0.01, P<0.05). In the hypothalamus-related neurotransmitters, 5-HT content was significantly increased (P<0.01) and DA content was significantly decreased (P < 0.05) in group J compared with group M. Curcumin could regulate the expressions of biorhythmic genes (Clock, Bmal1, Per1, Per2, Per3, Cry1, Cry2, Rev-erbα/β) in the hypothalamus. Conclusion Curcumin improves sleep disorder by modulating the expression of related biorhythmic genes and altering related serum hormones and hypothalamic neurotransmitters.

关键词

密闭环境 / 睡眠障碍 / 姜黄素 / 下丘脑神经递质 / 血清激素 / 生物节律基因

Key words

confined environment / sleep disorder / curcumin / hypothalamic neurotransmitters / serum hormone / biological rhythm genes

引用本文

导出引用
张晨阳, 边祥雨, 王锋, 虞立霞, 郭长江, 姚站馨. 姜黄素对密闭环境危害因素所致小鼠睡眠障碍的改善作用[J]. 营养学报. 2025, 47(2): 185-190
ZHANG Chen-yang, BIAN Xiang-yu, WANG Feng, YU Li-xia, GUO Chang-jiang, YAO Zhan-xin. CURCUMIN IMPROVES SLEEP DISORDER IN MICE EXPOSED TO THE CONFINED ENVIRONMENT[J]. Acta Nutrimenta Sinica. 2025, 47(2): 185-190
中图分类号: R151.2   

参考文献

[1] 王凯, 何麒灿, 于楠, 等. 长时密闭作业对骨代谢的影响及保障技术的研究进展[J]. 职业与健康, 2022, 38: 3309–3312.
[2] 宋兴爽, 李祺, 杜丽娜. 密闭环境对脑功能影响及其治疗药物[J]. 药学实践与服务,2023,41:74–80.
[3] Wang C, Trongnetrpunya A, Samuel IB, et al. Compensatory neural activity in response to cognitive fatigue[J]. J Neurosci, 2016,36:3919–3924.
[4] Wang F, Zhang L, Zhang Y, et al. Meta-analysis on night shift work and risk of metabolic syndrome[J]. Obes Rev, 2014,15: 709–720.
[5] 刘雅贞, 蒋晓江, 郎莹, 等. 军事人员睡眠障碍防护研究进展[J]. 西南国防医药,2020,30: 267–269.
[6] 徐明, 储雪雁, 王浩, 等. 部队官兵睡眠质量情况调查研究[J]. 中华保健医学杂志,2017,19: 60–61.
[7] Iranzo A.Sleep and neurological autoimmune diseases[J]. Neuropsychopharmacology,2020,45: 129–140.
[8] Cirelli C, Tononi G.Linking the need to sleep with synaptic function[J].Science, 2019, 366: 189–190.
[9] 刘艳骄, 王芳, 汪卫东. 中药替代治疗对安眠药物依赖性失眠的理论与实践[J]. 世界睡眠医学杂志, 2015, 2: 27–30.
[10] 张芳铭, 郑慧, 郑淘, 等. 改善睡眠功能的食药资源及保健食品应用[J]. 食品科学, 2020, 41: 303–310.
[11] Ahmad RS, Hussain MB, Sultan MT, et al. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: a mechanistic review[J]. Evid Based Complement Alternat Med, 2020, 2020: 7656919.
[12] Kotha RR, Luthria DL.Curcumin: biological, pharma-ceutical, nutraceutical,analytical aspects[J]. Molecules, 2019, 24:2930.
[13] Um MY, Yoon M, Kim M, et al. Correction: curcuminoids, a major turmeric component, have a sleep-enhancing effect by targeting the histamine H1 receptor[J]. Food Funct, 2023, 14: 1259.
[14] 闫俊苗, 徐炜, 刘立科, 等. 分析茯苓、三七及其复合物改善小鼠睡眠作用的影响[J]. 世界睡眠医学杂志, 2024, 11: 458–464.
[15] 卢悦, 赵国杰, 吴芳杉, 等. γ-氨基丁酸对昼夜节律紊乱型小鼠睡眠干预研究[J]. 营养学报, 2023, 45: 139–147.
[16] 刘美汛, 王一媚, 贾雯, 等. 后生元那曲4580对慢性束缚应激小鼠睡眠障碍的改善效果[J]. 中国微生态学杂志, 2024, 36: 671–676.
[17] 张婷. 牡蛎酶解产物改善睡眠作用研究及产品开发[D].广州:广东海洋大学, 2021.
[18] Masek P, Worden K, Aso Y, et al. A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila[J]. Curr Biol. 2015, 25: 1535–1541.
[19] Oikonomou G, Altermatt M, Zhang RW, et al. The serotonergic raphe promote sleep in zebrafish and mice[J].Neuron,2019,103: 686–701.
[20] Ingiosi AM, Hayworth CR, Harvey DO, et al. A role for astroglial calcium in mammalian sleep and sleep regulation[J].Curr Biol, 2020, 30:4373–4383.
[21] Oishi Y, Saito YC, Sakurai T.GABAergic modulation of sleep-wake states[J].Pharmacol Ther, 2023, 249: 108505.
[22] Eban-rothschild A, Rothschild G, Giardino WJ,#magtechI#et al. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors[J]. Nat Neurosci, 2016, 19: 1356–1366.
[23] 珠娜,郝云涛,刘欣然,等. 核桃低聚肽改善睡眠作用及机制[J]. 中国生育健康杂志, 2020, 31: 147–150,173.
[24] 李春艳, 王宇红, 王华, 等. 抑郁合并失眠对大鼠HPA轴及下丘脑中氨基酸类和单胺类神经递质的影响[J]. 中国药理学通报, 2021, 37: 815–822.
[25] Dong YJ, Jiang NH, Zhan LH, et al. Soporific effect of modified suanzaoren decoction on mice models of insomnia by regulating orexin-A and HPA axis homeostasis[J]. Biomed Pharmacother, 2021, 143: 112141.
[26] 花玥, 郭盛, 朱悦, 等. 酸枣仁对失眠大鼠HPA轴功能的干预作用研究[J].中国现代中药,2022,24:2400-2407.
[27] Smith PC, Mong JA.Neuroendocrine control of sleep[J]. Curr Top Behav Neurosci,2019,43:353–378.
[28] 李梦琪,王洪峰,王文慧,等. 针灸改善睡眠剥夺后认知障碍的神经生物学机制研究进展[J]. 上海针灸杂志, 2021, 40: 1162–1166.
[29] Reinke H, Asher G.Crosstalk between metabolism and circadian clocks[J]. Nat Rev Mol Cell Biol, 2019, 20: 227–241.
[30] Honma S.The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm[J]. J Physiol Sci, 2018, 68: 207–219.
[31] Palm D, Uzoni A, Simon F, et al. Evolutionary conservations, changes of circadian rhythms and their effect on circadian disturbances and therapeutic approaches[J]. Neurosci biobehav Rev, 2021, 128: 21–34.
[32] 张付民, 李艳兵. 酸枣仁汤对睡眠剥夺大鼠视交叉上核生物钟基因Period 1及Period 2表达的影响[J]. 安徽医药, 2019, 23: 2132–2136.
[33] Tabibzadeh S.Circadiomic medicine and aging[J]. Ageing Res Rev, 2021, 71:101424.
[34] Jang S, Park I, Choi M, et al. Impact of the circadian nuclear receptor REV-ERBα in dorsal raphe 5-HT neurons on social interaction behavior, especially social preference[J]. Exp Mol Med, 2023, 55: 1806–1819.
[35] 侯婉婷. 柴胡低极性部位对昼夜节律紊乱的调节作用研究[D]; 山西大学, 2022.
[36] Curie T, Maret S, Emmenegger Y, et al. In vivo imaging of the central and peripheral effects of sleep deprivation and suprachiasmatic nuclei lesion on period-2 protein in mice[J]. Sleep, 2015, 38: 1381–1394.

基金

国家自然科学基金(No. 81903307)

PDF(3356 KB)

Accesses

Citation

Detail

段落导航
相关文章

/