目的 探讨S-腺苷高半胱氨酸水解酶(S-adenosyl homocysteine hydrolase,SAHH)过表达对高蛋氨酸诱导动脉粥样硬化(atherosclerosis,AS)的影响。方法 采用ApoE-/-小鼠,以高脂高蛋氨酸饮食进行喂养,并采用腺相关病毒介导的SAHH过表达干预,观察并比较两组小鼠体重、摄食、血脂谱、蛋氨酸代谢指标[S-腺苷高半胱氨酸(S-adenosyl homocysteine,SAH)、S-腺苷蛋氨酸(S-adenosyl methionine,SAM)和同型半胱氨酸(homocysteine,Hcy)水平及SAM/SAH比值]的变化;采用HE和油红O染色对主动脉窦AS斑块大小进行评估;采用免疫荧光染色和化学荧光染色分析评估主动脉窦的炎症、细胞增殖和氧化应激情况;采用转录组测序分析探究SAHH过表达对AS关键信号通路的影响。结果 与对照组相比,SAHH过表达组小鼠血浆SAH [(53.71 ± 5.43)nmol/L vs (31.79 ± 4.67) nmol/L]和SAM水平[(146.65 ± 6.21)nmol/L vs (113.22 ± 8.74) nmol/L]明显降低,SAM/SAH比值(2.76 ± 0.32)vs (3.61 ± 0.59)和Hcy[(10.58 ± 2.94)μmol/L vs (14.87 ± 2. 36) μmol/L)]水平明显升高;主动脉窦AS斑块相对面积显著下降;单核细胞分化抗原68(cluster of differentiation 68,CD68)、细胞间黏附分子1(intercellular adhesion molecule 1,ICAM-1)、血管细胞黏附分子1(vascular cell adhesion molecule 1,VCAM-1)、Ki-67抗原(Ki-67 antigen,Ki-67)和增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)的表达均降低, 二氢乙啶染色[dihydroethidium (DHE) staining]染色的平均荧光强度显著降低;转录组分析表明,SAHH过表达主动脉血管中与AS相关的促炎基因[如白细胞介素-1β(interleukin-1 beta,IL-1β)、白细胞介素-6(interleukin-6,IL-6)、肿瘤坏死因子-α(tumor necrosis factor-alpha,TNF-α)]显著下调,同时抗炎、抗氧化和抗增殖基因[如过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor alpha Pparα)、血红素加氧酶1(heme oxygenase 1,Hmox1)、α-平滑肌肌动蛋白(alpha-smooth muscle actin,Acta2)]明显上调;KEGG分析显示,细胞因子-细胞因子受体相互作用基因显著富集。结论 SAHH过表达对高蛋氨酸诱导的动脉粥样硬化具有保护作用。
Abstract
Objective To investigate the effects of S-adenosyl homocysteine hydrolase (SAHH) overexpression on high fat and methionine induced atherosclerosis (AS). Methods ApoE-/- mice were fed a high-fat, high-methionine diet, with adenovirus-mediated SAHH overexpression intervention. The changes in body weight, food intake, blood lipid profiles, methionine metabolism indicators [(S-adenosyl homocysteine (SAH), S-adenosyl methionine (SAM), homocysteine (Hcy) levels, and SAM/SAH ratio)] were observed. Hematoxylin and eosin (HE) and Oil Red O staining were used to evaluate the aortic sinus AS plaque size. Immunofluorescence staining and chemiluminescence staining were used to assess inflammation, cell proliferation, and oxidative stress in the aortic sinus. RNA sequencing was used to explore the impact of SAHH overexpression on key signaling pathways associated with AS. Results Compared to the control group, the SAHH overexpression group showed significantly lower plasma levels of SAH [(53.71 ± 5.43) nmol/L vs (31.79 ± 4.67 nmol/L) ] and SAM [(146.65±6.21) nmol/L vs (113.22±8.74) nmol/L), while the SAM/SAH ratio (2.76 ± 0.32) vs (3.61 ± 0.59) and Hcy [(10.58±2.94 ) μmol/L vs (14.87±2.36) μmol/L)] were significantly higher. The relative area of aortic sinus atherosclerotic plaques (0.19±0.07 vs 0.16±0.05) significantly decreased. Inflammation and cell proliferation markers, including cluster of differentiation 68 (CD68), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), Ki-67 antigen (Ki-67), and proliferating cell Nuclear Antigen (PCNA), were reduced. The average fluorescence intensity measured by dihydroethidium (DHE) staining was significantly decreased. Transcriptome analysis indicated that SAHH overexpression downregulated pro-inflammatory genes [interleukin-1 beta(IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) ] and upregulated anti-inflammatory, antioxidant, and anti-proliferative genes (peroxisome proliferator-activated receptor alpha (Pparα), heme oxygenase 1 (Hmox1), alpha-smooth muscle actin(Acta2) expression. KEGG analysis revealed significant enrichment of cytokine-cytokine receptor interaction genes. Conclusion SAHH overexpression exerts a protective action against high fat and methionine induced atherosclerosis.
关键词
SAH水解酶 /
蛋氨酸代谢紊乱 /
动脉粥样硬化
Key words
SAH hydrolase /
methionine metabolism disorder /
atherosclerosis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Li J, Fu X, Yang R, et al. Atherosclerosis vascular endothelial secretion dysfunction and smooth muscle cell proliferation[J]. J Healthc Eng, 2022,2022:9271879.
[2] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76: 2982–3021.
[3] Barquera S, Pedroza-Tobías A, Medina C, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease[J]. Arch Med Res, 2015, 46: 328–338.
[4] Wang L, Hu B, Pan K, et al. SYVN1-MTR4-MAT2A signaling axis regulates methionine metabolism in glioma cells[J]. Front Cell Dev Biol, 2021, 9: 633259.
[5] Martínez Y, Li X, Liu G, et al. The role of methionine on metabolism, oxidative stress, and diseases[J]. Amino Acids, 2017, 49: 2091–2098.
[6] Shen W, Gao C, Cueto R, et al. Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling[J]. Redox Biol, 2020, 28: 101322.
[7] Luo X, Xiao Y, Song F, et al. Increased plasma S-adenosyl-homocysteine levels induce the proliferation and migrtion of VSMCs through an oxidative stress-ERK1/2 pathway in apoE(-/-) mice[J]. Cardiovasc Res, 2012, 95: 241-250.
[8] Liu C, Wang Q, Guo H, et al. Plasma S-adenosylhomocy-steine is a better biomarker of atherosclerosis than homocysteine in apolipoprotein E-deficient mice fed high dietary methionine[J]. J Nutr, 2008, 138: 311–315.
[9] Tehlivets O, Malanovic N, Visram M, et al. S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system[J]. Biochim Biophys Acta, 2013, 1832: 204–215.
[10] Xiao Y, Zhang Y, Wang M, et al. Plasma S-adenosylho-mocysteine is associated with the risk of cardiovascular events in patients undergoing coronary angiography: a cohort study[J]. Am J Clin Nutr, 2013, 98: 1162–1169.
[11] Xiao Y, Xia J, Cheng J, et al. Inhibition of S-adenosylhomocysteine hydrolase induces endothelial dysfunction via epigenetic regulation of p66shc-mediated oxidative stress pathway[J]. Circulation, 2019, 139: 2260–2277.
[12] Halperin RO, Sesso HD, Ma J, et al. Dyslipidemia and the risk of incident hypertension in men[J]. Hypertension, 2006, 47: 45–50.
[13] Ma X, Deng J, Han L, et al. Single-cell RNA sequencing reveals B cell-T cell interactions in vascular adventitia of hyperhomocysteinemia-accelerated atherosclerosis[J]. Protein Cell, 2022, 13: 540–547.
[14] Xu L, Hao H, Hao Y, et al. Aberrant MFN2 transcription facilitates homocysteine-induced VSMCs proliferation via the increased binding of c-Myc to DNMT1 in atherosclerosis[J]. J Cell Mol Med, 2019, 23: 4611–4626.
[15] Lu SS, Xie J, Su CQ, et al. Plasma homocysteine levels and intracranial plaque characteristics: association and clinical relevance in ischemic stroke[J]. BMC Neurol, 2018, 18: 200.
[16] Klimek A, Nowakowska A, Kletkiewicz H, et al. Bidirectional effect of repeated exposure to extremely low-frequency electromagnetic field (50 Hz) of 1 and 7 mT on oxidative/antioxidative status in rat's brain: the prediction for the vulnerability to diseases[J]. Oxid Med Cell Longev, 2022, 1031211.
[17] Dinarello CA.Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J]. Blood, 2011, 117: 3720–3732.
[18] Deng X, Liang C, Qian L, et al. miR-24 targets HMOX1 to regulate inflammation and neurofunction in rats with cerebral vasospasm after subarachnoid hemorrhage[J]. Am J Transl Res, 2021, 13: 1064–1074.
[19] Moss JW, Ramji DP.Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets[J]. Future Med Chem, 2016, 8: 1317–1330.
基金
国家自然科学基金(No.8190329); 深圳市医学研究专项资金(No.B2403003); 广东省基础与应用基础研究基金(No.2022B1515020108)