[1] Javidi H, Yadollahie M. Post-traumatic stress disorder[J]. Int J Occup Environ Med, 2012, 3(1): 2-9. [2] Brady KT, Killeen TK, Brewerton T, et al. Comorbidity of psychiatric disorders and posttraumatic stress disorder[J]. J Clin Psychiat, 2000, 61: 22-32. [3] Hoskins M, Pearce J, Bethell A, et al. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis[J]. Br J Psychiatry, 2015, 206(2): 93-100. [4] Li Y, Dong Y, Yang L, et al. Transcranial photobiomodulation prevents PTSD-like comorbidities in rats experiencing underwater trauma[J]. Transl Psychiat, 2021, 11(1): 270. [5] Isserles M, Tendler A, Roth Y, et al. Deep transcranial magnetic stimulation combined with brief exposure for posttraumatic stress disorder: A prospective multisite randomized trial[J]. Biol Psychiat, 2021, 90(10): 721-728. [6] Zheng L, Yu M, Lin R, et al. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity[J]. Nat Commun, 2020, 11(1): 3012. [7] Richter-Levin G, Stork O, Schmidt MV. Schmidt animal models of PTSD: a challenge to be met[J]. Mol Psychiat, 2019, 24(8): 1135-1156. [8] Cardin JA, Carlén M, Meletis K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses[J]. Nature, 2009, 459(7247): 663-667. [9] Adaikkan C, Middleton SJ, Marco A, et al. Gamma entrainment binds higher-order brain regions and offers neuroprotection[J]. Neuron, 2019, 102(5): 929-943.e928. [10] Martorell AJ, Paulson AL, Suk HJ, et al. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition[J]. Cell, 2019, 177(2): 256-271. [11] Rubin DC, Berntsen D, Bohni MK. A memory-based model of posttraumatic stress disorder: evaluating basic assumptions underlying the PTSD diagnosis[J]. Psychol Rev, 2008, 115(4): 985-1011. [12] Yamamoto S, Morinobu S, Takei S, et al. Single prolonged stress: toward an animal model of posttraumatic stress disorder[J]. Depress Anxiety, 2009, 26(12): 1110-1117. [13] Golub Y, Mauch CP, Dahlhoff M, et al. Consequences of extinction training on associative and non-associative fear in a mouse model of posttraumatic stress disorder (PTSD)[J]. Behav Brain Res, 2009, 205(2): 544-549. [14] Hou L, Qi Y, Sun H, et al. Applying ketamine to alleviate the PTSD-like effects by regulating the HCN1-related BDNF[J]. Prog Neuropsychopharmacol Biol Psychiat, 2018, 86: 313-321. [15] Serova LI,Nwokafor C, Van Bockstaele EJ, et al. Single prolonged stress PTSD model triggers progressive severity of anxiety, altered gene expression in locus coeruleus and hypothalamus and effected sensitivity to NPY[J]. Eur Neuropsychopharmacol, 2019, 29(4): 482-492. [16] 牛江涛, 张泽国, 曹 瑞, 等. 四逆散对PTSD及睡眠障碍大鼠海马CA1/CA3区神经元动作电位的影响[J]. 中国应用生理学杂志, 2018, 34(4): 363-366. [17] Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety[J]. Nat Rev Neurosci, 2015, 16(6): 317-331. [18] Yang FC, Liang KC. Interactions of the dorsal hippocampus, medial prefrontal cortex and nucleusaccumbens in formation of fear memory: difference in inhibitory avoidance learning and contextual fear conditioning[J]. Neurobiol Learn Mem, 2014, 112: 186-194. [19] Chang SH, Yu YH, He A, et al. BDNF protein and BDNF mRNA expression of the medial prefrontal cortex, amygdala, and hippocampus during situational reminder in the PTSD animal model[J]. Behav Neurol, 2021, 2021: 6657716. [20] Pandey GN, Ren X,Rizavi HS, et al. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims[J].Int Neuropsychopharmacol, 2008, 11(8): 1047-1061. [21] 刘煜鑫, 闫 东. 右美托咪定对大鼠海马神经元生长发育的影响及其机制[J]. 中国应用生理学杂志, 2019, 35(1): 69-73. [22] Han M, Ban JJ, Bae JS, et al. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation[J]. Sci Rep, 2017, 7(1): 15574. [23] Masliah E, Terry R. The role of synaptic proteins in the pathogenesis of disorders of the central nervous system[J].Brain Pathol, 1993, 3(1): 77-85. |