[1] Wang T, Feng X, Zhou J, et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly[J]. Sci Rep, 2016, 6: 38937. [2] Kim CK, He P, Bialkowska AB, et al. SP and KLF transcription factors in digestive physiology and diseases [J]. Gastroenterology, 2017, 152(8): 1845-1875. [3] Yu H, Kazuhiro N, Yoko S, et al. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis[J]. JCL Insight, 2019, 4(4): e124952. [4] 李 丽, 朱 伟, 魏 盟, 等. Kruppel样因子15-多功能转录因子的功能研究[J]. 医学综述, 2014, 20(16): 2916-2918. [5] Zuo XY, Yao RF, Zhao LY, et al. Campanumoea javanica Bl. activates the PI3K/AKT/mTOR signaling pathway and reduces sarcopenia in a T2DM rat model[J]. AHM, 2022, 2(2): 99-108. [6] Handayaningsih AE, Iguchi G, Fukuoka H, et al. Reactive oxygen species play an essential role in IGF-I signaling and IGFI-induced myocyte hypertrophy in C2C12 myocytes[J] . Endocrinology, 2011, 152(3) : 912-921. [7] Shimizu N, Yoshikawa N, Ito N, et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle[J]. Cell Metab, 2011, 13(2): 170-182. [8] Stoa EM, Meling S, Nyhus LK, et al. High-intensity aerobic interval training improves aerobic fitness and Hb A1c among persons diagnosed with type 2 diabetes[J] . Eur J Appl Physiol, 2017, 117(3): 455-467. [9] Pareja GH, Garatachea N, Lucia A. Exercise as a polypill for chronic diseases[J]. Prog Mol Biol Transl Sci, 2015, (135): 497-526. [10] Takamura Y, Nomura M, Uchiyama A, et al. Effects of aerobic exercise combined with panaxatriol derived from ginseng on insulin resistance and skeletal muscle mass in type 2 diabetic mice[J]. J Nutr Sci Vitaminol (Tokyo), 2017, 63(5): 339-348. [11] 朱洪竹, 朱梅菊, 张 莹. 有氧运动联合螺旋藻多糖对糖尿病大鼠学习记忆能力的影响及其机制[J]. 中国应用生理学杂志, 2021, 37(6): 665-672. [12] Yue X, Gong DW, Tian Z. FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats[J]. Sci Rep, 2016, 6: 32424. [13] 侯改霞, 习雪峰, 刘倩倩, 等. 有氧间歇运动对2型糖尿病大鼠心肌线粒体自噬的影响[J]. 中国病理生理杂志, 2022, 38(3): 442-447. [14] 项静燕, 赵玉武, 周 健. 糖尿病大鼠骨骼肌病变发病机制初步探讨[J]. 上海医学, 2011, 34 (3): 190-193. [15] Ozaki K, Matsuura T, Narama I. Histochemical and morphometrical analysis of skeletal muscle in spontaneous diabetic WBN/Kob rat[J]. Acta Neuropathol, 2001, 102: 264- 270. [16] 蒙碧辉, 刘 红, 梁 莹, 等. 1型糖尿病树鼩骨骼肌病变及其发病机制[J]. 中华糖尿病杂志, 2005, 13(14): 290-292. [17] Garcia AJ, Lange P, Benet M, et al. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: a population based cohort study[J]. Thorax, 2006, 61(9): 772-778. [18] Takashima M, Ogawa W, Hayashi K, et al. Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action[J]. Diabetes, 2010, 59(7): 1608-1615. [19] Handayaningsih AE, Iguchi G, Fukuoka H, et al. Reactive oxygen species play an essential role in IGF-I signaling and IGFI-induced myocyte hypertrophy in C2C12 myocytes[J]. Endocrinology, 2011, 152(3): 912-921. [20] Choi RH, McConahay A, Jeong HW, et al. Tribbles 3 regulates protein turnover in mouse skeletal muscle [J]. Biochem Biophys Res Commun, 2017, 493(3) : 1236-1242. [21] 王 继, 杨中亚, 张 龙, 等. AMPK/PGC-1α在有氧运动改善2型糖尿病大鼠骨骼肌萎缩中的作用[J]. 中国组织工程研究, 2020, 24(20): 3180-3185. [22] 朱 琳. mTOR 通路对糖尿病雪旺氏细胞凋亡影响的研究[D]. 河北: 河北医科大学, 2018. [23] 窦曹帅. 转录因子KLF15通过下调NFATc1保护足细胞细胞的机制研究[D]. 广东: 华南理工大学, 2020. |