[1] Zhang LF. Region-specific vascular remodeling and its pre-vention by artificial gravity in weightless environment[J]. Eur J Appl Physiol, 2013, 113(12):2873-2895. [2] Lin LJ, Gao F, Bai YG, et al. Contrasting effects of simu-lated microgravity with and without daily -Gx gravitation on structure and function of cerebral and mesenteric small arter-ies in rats[J]. J Appl Physiol, 2009, 107(6):1710-1721. [3] Bao JX, Zhang LF, Ma J. Angiotensinogen and AT1R ex-pression in cerebral and femoral arteries during hindlimb un-loading in rats[J]. Aviat Space Envir Md, 2007, 78(9):852-858. [4] Hwang S, Shelkovnikov SA, Purdy RE. Simulated micro-gravity effects on the rat carotid and femoral arteries:role of contractile protein expression and mechanical properties of the vessel wall[J]. J Appl Physiol, 2007, 102(4):1595-1603. [5] 李志利, 姜世忠. 失重或模拟失重条件下血管收缩反应变化的研究进展[J]. 航天医学与医学工程, 2005, 18(5):387-390. [6] Zhang LF. Vascular adaptation to microgravity[J]. J Appl Physiol, 2004, 97(4):1584-1587. [7] Bradley JB, John NS, Danielle JM, et al. Effects of space-flight and ground recovery on mesenteric artery and vein con-strictor properties in mice[J]. FASEB J, 2013, 27(1):399-409. [8] Xue JH, Chen LH, Zhao HZ, et al. Differential regulation and recovery of intracellular Ca2+ in cerebral and small mesenteric arterial smooth muscle cells of simulated micro-gravity rat[J]. PloS One, 2011, 6(5):e19775. [9] 郑秉杰. 脑血管痉挛发病机制:激酶与钙敏感性[J]. 国际神经病学神经外科学杂志, 2009, 36(3):228-231. [10] Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasocon-striction[J]. Cardiovasc Res, 2008, 77(1):8-18. [11] Pfitzer G. Invited review:regulation of myosin phosphoryla-tion in smooth muscle[J]. J Appl Physiol, 2001, 91(1):497-503. [12] Savineau JP, Marthan R. Modulation of the calcium sensitivi-ty of the smooth muscle contractile apparatus:molecular mechanisms, pharmacological and pathophysiological impli-cations[J]. Fund Clin Pharmacol, 1997, 11(4):289-299. [13] 董颀, 沈羡云, 谢励勤, 等. 模拟失重大鼠骨丢失及血循环状态紊乱的中药防护[J]. 中国临床药理学与治疗学, 2005, 10(4):407-412. [14] Li SY, Yang Z, Gao YF, et al. Ligustrazine and the con-tractile properties of soleus muscle in hindlimb-unloaded rats[J]. Aviat Space Envir Md, 2012, 83(11):1049-1054. [15] 曹晋, 高云芳, 刘坤. 川芎及两种主要药效成分对废用性肌萎缩的影响[J]. 中国应用生理学杂志, 2010, 26(1):109-113. [16] Du FY, Wang J, Gao YF, et al. A hind limb disuse model inducing extensor digitorum longus atrophy in rats:tail sus-pension-immobilization[J]. Aviat Space Envir Md, 2011, 82(7):689-693. [17] 徐竞, 杨光明, 李涛, 等. 蛋白激酶Cε对失血性休克大鼠血管反应性和钙敏感性的调节作用[J]. 中国危重病急救医学, 2008, 20(3):144-147. [18] 李涛, 刘良明, 杨光明, 等. 失血性休克大鼠血管平滑肌钙敏感性变化及其在休克双相血管反应性变化中的作用[J]. 中国危重病急救医学, 2005, 17(11):647-650. [19] Cristine LH, Janet LP, Michael S, et al. Altered calcium sensitivity contributes to enhanced contractility of collateral-dependent coronary arteries[J]. J Appl Physiol, 2004, 97(1):310-316. [20] Mizuno Y, Isotani E, Huang J, et al. Myosin light chain ki-nase activation and calcium sensitization in smooth muscle in vivo[J]. Am J Physiol Cell Physiol, 2008, 295(2):C358-364. |