[1] 于亮, 王瑞元, 陈晓萍. 加压运动对去负荷肌萎缩的影响及机制研究进展[J]. 生理科学进展, 2016, 47(3): 227-230. [2] Vechetti-Junior IJ, Bertaglia RS, Fernandez GJ, et al. Aerobic exercise recovers disuse-induced atrophy through the stimulus of the LRP130/PGC-1α complex in aged rats[J]. J Gerontol A Biol Sci Med Sci, 2016, 71(5): 601-609. [3] Zhong X, Sun X, Shan M, et al. The production, detection, and origin of irisin and its effect on bone cells[J]. Int J Biol Macromol, 2021, 178: 316-324. [4] Branden LN, Toshinori Y, Rafael D, et al. Alterations in renin-angiotensin receptors are not responsible for exercise preconditioning of skeletal muscle fibers[J]. Sports Med Health Sci, 2021, 3(3): 148-156. [5] Akagawa M, Miyakoshi N, Kasukawa Y, et al. Effects of activated vitamin D, alfacalcidol, and low-intensity aerobic exercise on osteopenia and muscle atrophy in type 2 diabetes mellitus model rats[J]. PLoS One, 2018, 13(10): e0204857. [6] Zhang Y, Pan X, Sun Y, et al. The molecular mechanisms and prevention principles of muscle atrophy in aging[J]. Muscle Atrophy, 2018: 347-368. [7] Liu Y, Guo C, Liu S, et al. Eight weeks of high-intensity interval static strength training improves skeletal muscle atrophy and motor function in aged rats via the PGC-1α/FNDC5/UCP1 pathway[J]. Clin Interv Aging, 2021, 16: 811-821. [8] Farsani ZH, Banitalebi E, Faramarzi M, et al. Effects of different intensities of strength and endurance training on some osteometabolic miRNAs, Runx2 and PPARγ in bone marrow of old male wistar rats[J]. Mol Biol Rep, 2019, 46(2): 2513-2521. [9] Moreira VM, Almeida D, da Silva Franco CC, et al. Moderate exercise training since adolescence reduces Walker 256 tumour growth in adult rats[J]. J Physiol, 2019, 597(15): 3905-3925. [10] Singulani MP, Stringhetta-Garcia CT, Santos LF, et al. Effects of strength training on osteogenic differentiation and bone strength in aging female Wistar rats[J]. Sci Rep, 2017, 7(1): 1-11. [11] 高放, 余志斌. 去负荷比目鱼肌高频强直收缩疲劳性的动态变化[J]. 第四军医大学学报, 2004(20): 1831-1833. [12] 汪军, 周越, 孙君志, 等. 质疑与思考:运动生理学研究的十个问题[J]. 成都体育学院学报, 2021, 47(1): 118-124. [13] 史华彩, 陈睿, 佘燕玲, 等. Atrolnc-1在制动诱导小鼠后肢肌萎缩中的作用研究[J]. 中国应用生理学杂志, 2021, 37(5): 566-570. [14] Theilen NT, Jeremic N, Weber GJ, et al. Exercise preconditioning diminishes skeletal muscle atrophy after hindlimb suspension in mice[J]. J Appl Physiol(1985), 2018, 125(4): 999-1010. [15] Akagawa M, Miyakoshi N, Kasukawa Y, et al. Effects of activated vitamin D, alfacalcidol, and low-intensity aerobic exercise on osteopenia and muscle atrophy in type 2 diabetes mellitus model rats[J]. PloS one, 2018, 13(10): e0204857. [16] Buso A, Comelli M, Picco R, et al. Mitochondrial adaptations in elderly and young men skeletal muscle following 2 weeks of bed rest and rehabilitation[J]. Front Physiol, 2019, 10: e474. [17] MacNeil LG, Glover E, Bergstra TG, et al. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function[J]. PLoS One, 2014, 9(10): e109189. [18] 苏艳红, 袁乾坤, 肖蓉, 等. 抗阻训练对增龄大鼠骨骼肌线粒体功能的影响[J]. 中国应用生理学杂志, 2020, 36(2): 165-170. [19] Hood DA, Tryon LD, Vainshtein A, et al. Exercise and the regulation of mitochondrial turnover[J]. Prog Mol Biol Transl Sci, 2015, 135: 99-127. [20] Reza MM, Subramaniyam N, Sim CM, et al. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy[J]. Nat Commun, 2017, 8(1): 1-17. |