[1] Lange P. Chronic heart failure[J]. Aust Fam Physician, 2011, 40(6):362. [2] Rengo G, Pagano G, Vitale DF, et al. Impact of aging on cardiac sympathetic innervation measured by 123I-mIBG imaging in patients with systolic heart failure[J]. Eur J Nucl Med Mol Imaging, 2016, 43(13):2392-2400. [3] Balligand JL. Beta3-adrenoreceptors in cardiovasular diseases:new roles for an "old" receptor[J]. Curr Drug Deliv, 2013, 10(1):64-66. [4] Moniotte S, Kobzik L, Feron O, et al. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium[J]. Circulation, 2001, 103(12):1649-1655. [5] 杨岚, 李海清, 李晓鹏, 等. β3肾上腺素能受体通过降低钙敏感性介导正常和心衰大鼠心脏的负性肌力作用[J]. 中国心血管病研究, 2015, 13(7):671-672. [6] 赵倩倩, 景佳妮, 李海清, 等. β3-AR阻断剂SR 59230A对大鼠胸主动脉张力及microRNA表达的影响[J]. 中国应用生理学杂志, 2017, 33(1):6-10. [7] Mamamtavrishvili ND, Kvirkveliia AA, Abashidze RI, et al. Role of immune inflammatory activity in chronic heart failure progress[J]. Georgian Med News, 2008(160-161):30-34. [8] Gao E, Lei YH, Shang X, et al. A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse[J]. Circ Res, 2010, 107(12):1445-1453. [9] Gan RT, Li WM, Xiu CH, et al. Chronic blocking of beta 3-adrenoceptor ameliorates cardiac function in rat model of heart failure[J]. Chin Med J (Engl), 2007, 120(24):2250-2255. [10] Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue[J]. Pathologe, 1987, 8(3):138-140. [11] Rubattu S, Mennuni S, Testa M, et al. Pathogenesis of chronic cardiorenal syndrome:is there a role for oxidative stress[J]. Int J Mol Sci, 2013, 14(11):23011-23032. [12] Maier HJ, Schips TG, Wietelmann A, et al. Cardiomyocyte-specific IkappaB kinase (IKK)/NF-kappaB activation induces reversible inflammatory cardiomyopathy and heart failure[J]. Proc Natl Acad Sci U S A, 2012, 109(29):11794-11799. [13] Ryan KM, Ernst MK, Rice NR, et al. Role of NF-kappaB in p53-mediated programmed cell death[J]. Nature, 2000, 404(6780):892-897. [14] De Rosa S, Curcio A, Indolfi C. Emerging role of microRNAs in cardiovascular diseases[J]. Circ J, 2014, 78(3):567-575. [15] Dirkx E, Gladka MM, Philippen LE, et al. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure[J]. Nat Cell Biol, 2013, 15(11):1282-1293. [16] Sucharov C, Bristow MR, Port JD. miRNA expression in the failing human heart:functional correlates[J]. J Mol Cell Cardiol, 2008, 45(2):185-192. [17] Eigsti RL, Sudan B, Wilson ME, et al. Regulation of activation-associated microRNA accumulation rates during monocyte-to-macrophage differentiation[J]. J Biol Chem, 2014, 289(41):28433-28447. [18] Liu Q, Du GQ, Zhu ZT, et al. Identification of apoptosis-related microRNAs and their target genes in myocardial infarction post-transplantation with skeletal myoblasts[J]. J Transl Med, 2015, 13:270. [19] Dong G, Fan H, Yang Y, et al. 17beta-Estradiol enhances the activation of IFN-alpha signaling in B cells by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p that target IKKepsilon. Biochim Biophys Acta, 2015, 1852(8):1585-1598. [20] Rasheed Z, Al-Shobaili HA, Rasheed N, et al. MicroRNA-26a-5p regulates the expression of inducible nitric oxide synthase via activation of NF-kappaB pathway in human osteoarthritis chondrocytes[J]. Arch Biochem Biophys, 2016, 594:61-67. [21] Marques FZ, Vizi D, Khammy O, et al. The transcardiac gradient of cardio-microRNAs in the failing heart[J]. Eur J Heart Fail, 2016, 18(8):1000-1008. |