[1] Wojcik S, Nogalska A, Engel WK, et al. Myostatin and its precursor protein are increased in the skeletal muscle of patients with Type-Ⅱ muscle fibre atrophy[J]. Folia Morphol (Warsz), 2008, 67(1):6-12. [2] El Shafey N, Guesnon M, Simon F, et al. Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides[J]. Exp Cell Res, 2016, 341(2):187-195. [3] Nedergaard A, Vissing K, Overgaard K, et al. Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise:effect of different loading patterns and repeated exercise bouts[J]. J Appl Physiol, 2007, 103(5):1513-1522. [4] Stefanetti RJ, Lamon S, Rahbek SK, et al. Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle[J]. J Appl Physiol, 2014, 116(11):1491-1502. [5] Armstrong RB, Ogilvie RW, Schwane JA. Eccentric exercise-induced injury to rat skeletal muscle[J]. J Appl Physiol Respir Environ Exerc Physiol, 1983, 54(1):80-93. [6] 张荷, 周越, 张一民, 等. 低氧运动对肥胖大鼠胰岛素抵抗及血脂代谢的影响[J]. 北京体育大学学报, 2016, 39(9):44-49, 56. [7] 周慧敏, 李博雅, 朱欢, 等. 健步走运动对中老年2型糖尿病患者的作用[J]. 中国应用生理学杂志, 2015, 31(3):243-244, 248. [8] Colberg SR, Sigal RJ, Fernhall B, et al. Exercise and type 2 diabetes:the american college of sports medicine and the american diabetes association:joint position statement[J]. Diabetes Care, 2010, 33(12):147-167. [9] Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake[J]. Physiol Rev, 2013, 93(3):993-1017. [10] 梁健, 李焕春. 预热处理对离心运动大鼠骨骼肌超微结构、血清CK、LDH及氧化应激的影响[J]. 中国应用生理学杂志, 2017, 33(2):102-104. [11] Philippe M, Krusmann PJ, Mersa L, et al. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males[J]. Biol Sport, 2016, 33(2):153-158. [12] Marcus RL, Smith S, Morrell G, et al. Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus[J]. Phys Ther, 2008, 88(11):1345-1354. [13] Kim TN, Park MS, Yang SJ, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes:the Korean Sarcopenic Obesity Study (KSOS)[J]. Diabetes Care, 2010, 33(7):1497-1499. [14] 吴金富, 周越, 王兵, 等. 不同恢复方式对去负荷大鼠腓肠肌纤维类型组成的影响[J]. 中国运动医学杂志, 2011, 30(12):1094-1099. [15] 宋卫红, 汤长发, 刘文锋. 离心运动对大鼠骨骼肌细胞凋亡和增殖的影响[J]. 中国应用生理学杂志, 2013, 29(1):86-90. [16] 赵吉吉, 高前进, 杨霖, 等. 骨骼肌运动性表型适应的信号机制[J]. 中国老年学, 2014, 34(14):4095-4098. [17] Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease:molecular mechanisms and promising therapies[J]. Nat Rev Drug Discov, 2015, 14(1):58-74. [18] Sartori R, Milan G, Patron M, et al. Smad2 and 3 transcription factors control muscle mass in adulthood[J]. Am J Physiol Cell Physiol, 2009, 296(6):C1248-1257. [19] Jogo M, Shiraishi S, Tamura TA. Identification of MAF bx as a myogenin-engaged F-box protein in SCF ubiquitin ligase[J]. FEBS Lett, 2009, 583(17):2715-2719. |