[1] 杨张良, 徐慧琳, 程 茵, 等. 熊果酸对糖尿病小鼠心肌病变的作用及其机制[J]. 中国应用生理学杂志, 2018, 34(4): 309-312. [2] Lakshmanan AP, Harima M, Suzuki K, et al. The hyperglycemia stimulated myocardial endoplasmic reticulum (ER) stress contributes to diabetic cardiomyopathy in the transgenic non-obese type 2 diabetic rats: a differential role of unfolded protein response (UPR) signaling proteins[J]. Int J Biochem Cell Biol, 2013, 45(2): 438-447. [3] Zhao MX, Zhou B, Ling L, et al. Salusin-beta contributes to oxidative stress and inflammation in diabetic cardiomyopathy[J]. Cell Death Dis, 2017, 8(3): e2690. [4] Darehgazani R, Peymani M, Hashemi MS, et al. PPARgamma ameliorated LPS induced inflammation of HEK cell line expressing both human Toll-like receptor 4 (TLR4) and MD2[J]. Cytotechnology, 2016, 68(4): 1337-1348. [5] Pan Y, Zhu GH, Wang Y, et al. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart[J]. J Nutr Biochem, 2013, 24(1): 146-155. [6] Yang H, Wang HC, Ju ZL, et al. MD-2 is required for disulfide HMGB1-dependent TLR4 signaling[J]. J Exp Med, 2015, 212(1): 5-14. [7] Deguchi A, Tomita T, Omori T, et al. Serum amyloid A3 binds MD-2 to activate p38 and NF-kappaB pathways in a MyD88-dependent manner[J]. J Immunol, 2013,191(4): 1856-1864. [8] Choi SH, Kim J, Gonen A, et al. MD-2 binds cholesterol[J]. Biochem Biophys Res Commun, 2016, 470(4): 877-880. [9] Kawamoto EM, Cutler RG, Rothman SM, et al. TLR4-dependent metabolic changes are associated with cognitive impairment in an animal model of type 1 diabetes[J]. Biochem Biophys Res Commun, 2014, 443(2): 731-737. [10]Yang RH, Song ZX, Wu SQ, et al. Toll-like receptor 4 contributes to a myofibroblast phenotype in cardiac fibroblasts and is associated with autophagy after myocardial infarction in a mouse model[J]. Atherosclerosis, 2018, 279: 23-31. [11]Tao A, Song J, Lan T, et al. Cardiomyocyte-fibroblast interaction contributes to diabetic cardiomyopathy in mice: Role of HMGB1/TLR4/IL-33 axis[J]. Biochim Biophys Acta, 2015, 1852(10): 2075-2085. [12]Hu X, Bai T, Xu Z, et al. Pathophysiological fundamentals of diabetic cardiomyopathy[J]. Compr Physiol, 2017, 7(2): 693-711. [13]Wang XT, Gong Y, Zhou B, et al. Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats[J]. Biomed Pharmacother, 2018, 97: 1461-1467. [14]Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121): 860-867. [15]Khan S, Zhang DL, Zhang YM, et al. Wogonin attenuates diabetic cardiomyopathy through its anti-inflammatory and anti-oxidative properties[J]. Mol Cell Endocrinol, 2016, 428: 101-108. [16]Chen G, Zhang Y, Liu X, et al. Discovery of a new inhibitor of myeloid differentiation 2 from cinnamamide derivatives with anti-inflammatory activity in sepsis and acute lung injury[J]. J Med Chem, 2016, 59(6): 2436-2451. [17]Wang Y, Qian YY, Fang QL, et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2[J]. Nat Commun, 2017, 8: 13997. [18]Fang QL, Wang JY, Zhang YL, et al. Inhibition of myeloid differentiation factor-2 attenuates obesity-induced cardiomyopathy and fibrosis[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(1): 252-262. [19]Tian J, Zhao Y, Liu Y, et al. Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: current status and perspective[J]. Oxid Med Cell Longev, 2017, 2017: 8214541. [20]李凡璐, 宛 欣, 王 茜, 等. 辛伐他汀对大鼠糖尿病所致心肌细胞凋亡的影响及其机制[J]. 中国应用生理学杂志, 2018, 34(5): 422-426. [21]Wang S, Ding L, Ji H, et al. The role of p38 MAPK in the development of diabetic cardiomyopathy[J]. Int J Mol Sci, 2016, 17(7) : pii: E1037. [22]Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update[J]. Arch Toxicol, 2015, 89(6): 867-882. [23]Zheng C, Wu SM, Lian H, et al. Low-intensity pulsed ultrasound attenuates cardiac inflammation of CVB3-induced viral myocarditis via regulation of caveolin-1 and MAPK pathways[J]. J Cell Mol Med, 2019, 23(3): 1963-1975. [24]Wang WK, Lu QH, Zhang JN, et al. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway[J]. J Cell Mol Med, 2014, 18(11): 2311-2320. [25]Xu Z, Sun J, Tong Q, et al. The role of ERK1/2 in the development of diabetic cardiomyopathy[J]. Int J Mol Sci, 2016, 17(12) : pii: E2001. [26]Zuo G, Ren X, Qian X, et al. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy[J]. J Cell Physiol, 2019, 234(2): 1925-1936. |