[1] Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: A report from the American Heart Association[J]. Circulation, 2018, 137(12): e67-e492. [2] Bartel DP. MicroRNAs: Target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233. [3] Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy[J]. Circ Res, 2007, 100(3): 416-424. [4] Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy[J]? Am J Pathol, 2007, 170(6): 1831-1840. [5] Zhang R, Dong DL, Yang BF. Basic research and application of microRNA--a novel target for regulating cardiac arrhythmias[J]. Acta Pharm Sinica, 2011, 46(1): 6-11. [6] Condorelli G, Latronico M V G, Ii G W D. microRNAs in heart disease: putative novel therapeutic targets[J]? Eur Heart J, 2016, 31(6): 649-658. [7] 程杰坤, 孙小慧, 高莉萍, 等. 法舒地尔对异丙肾上腺素诱导大鼠心肌肥厚的干预作用及其机制[J]. 中国应用生理学杂志, 2016, 32(5): 414-418. [8] 王 羽, 刘明洁, 付 瑶, 等. 苏格木勒-3汤对异丙肾上腺素诱导的大鼠心肌肥厚Caspase3/9表达的影响[J]. 中国应用生理学杂志, 2017, 33(5): 390-392. [9] 徐 峰, 王景全, 白小涓, 等. 高频超声显像评价慢性压力负荷大鼠心肌结构和功能的动态变化[J]. 中华医学杂志(英文版), 2002, 115(4): 487-490. [10]Dong DL, Yang BF. Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure[J]. Acta Pharm Sinica B, 2011, 1(1): 1-7. [11]Wang J, Yang X. The function of miRNA in cardiac hypertrophy[J]. Cell Mol Life Sci, 2012, 69(21): 3561-3570. [12]Gao J, Li YH, Wang TM, et al. Analyzing gene expression profiles with preliminary validations in cardiac hypertrophy induced by pressureoverload[J]. Can J Physiol Pharmacol, 2018, 96(8): 701-709. [13]Zhang H, Li S, Zhou Q, et al. Qiliqiangxin attenuates phenylephrine-induced cardiac hypertrophy through downregulation of MiR-199a-5p[J]. Cell Physiol Biochem, 2016, 38(5): 1743-1751. [14]Rane S, He M, Sayed D, et al. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p[J]. Cell Signal, 2010, 22(7): 1054-1062. [15]Yang Y, Re D p D, Nakano N, et al. miR-206 mediates YAp-induced cardiac hypertrophy and survival[J]. Circ Res, 2015, 117(10): 891-904. [16]Shieh J T C , Huang Y, Gilmore J, et al. Elevated miR-499 levels blunt the cardiac stress response[J]. PLoS ONE, 2011, 6. [17]吴 扬, 郭媛媛, 张元媛, 等. H2S对大鼠心肌肥大与miRNA-133a和Ca2+/CaN/NFATc4信号通路的影响[J]. 中国应用生理学杂志, 2018, 34(1): 29-34. [18]Shen J, Xie Y, Liu ZJ, et al. Increased myocardial stiffness activates cardiac microvascular endothelial cell via VEGF paracrine signaling in cardiac hypertrophy[J]. J Mol Cell Cardiol, 2018, 122: 140-151. [19]Xu XH, Xu J, Xue L, et al. VEGF attenuates development from cardiac hypertrophy to heart failure after aortic stenosis through mitochondrial mediated apoptosis and cardiomyocyte proliferation[J]. J Cardiothorac Surg, 2011, 6(1): 54-62. [20]Wang T, Li R, Lin C, et al. Copper suppression of vascular endothelial growth factor receptor-2 is involved in the regression of cardiomyocyte hypertrophy[J]. Exp Biol Med, 2014, 239(8): 948-953. [21]Zou Y, Lin L, Ye Y, et al. Qiliqiangxin inhibits the development of cardiac hypertrophy, remodeling, and dysfunction during 4 weeks of pressure overload in mice [J]. J Cardiovasc Pharmacol, 2012, 59(3): 268-280. [22]Li Z, Song Y, Liu L, et al. miR-199a impairs autophagy and induces cardiac hypertrophy through mTOR activation[J]. Cell Death Differ, 2017, 24(7): 1205-1213. [23]Yan W, Guo L R, Zhang Q, et al. Chronic blockade of class I PI3-kinase attenuates Ang II-induced cardiac hypertrophy and autophagic alteration[J]. Eur Revr Med Pharmaco, 2015, 19(5): 772-783. [24]Ferdous A, Battiprolu PK, Ni YG, et al. FoxO, autophagy, and cardiac remodeling[J]. J Cardiovasc Trans Res, 2010, 3(4): 355-364. [25]Rifki O F, Hill J A . Cardiac autophagy: good with the bad[J]. J Cardiovasc Pharmacol, 2012, 60(3): 248-252. [26]Lucas E, Vila-Bedmar R, Arcones AC, et al. Obesity-induced cardiac lipid accumulation in adult mice is modulated by G protein-coupled receptor kinase 2 levels[J]. Cardiovascular Diabetology, 2016, 15(1): 155-168. [27]Kolwicz SC, Tian R .Glucose metabolism and cardiac hypertrophy[J]. Cardiovascular Research, 2011, 90(2): 194-201. [28]Zhang C, Wang F, Zhang Y, et al. Celecoxib prevents pressure overload-induced cardiac hypertrophy and dysfunction by inhibiting inflammation, apoptosis and oxidative stress[J]. J Cell Mol Med, 2016, 20(1): 116-127. |