[1] Lang F, Aravamudhan S, Nolte H, et al. Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy[J]. Dis Model Mech, 2017, 10(7): 881-896. [2] 段 斐, 张 华, 吴 越, 等. 失神经骨骼肌萎缩的研究现状及进展[J]. 现代生物医学进展, 2017, 17(7): 1382-1386. [3] Bilodeau PA, Coyne ES, Wing SS. The Ubiquitin proteasome system in atrophying skeletal muscle-roles and regulation[J]. Am J Physiol Cell Physiol, 2016, 311(3): C392-C403. [4] Clarke BA, Drujan D, Willis MS, et al. The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle[J]. Cell Metab, 2007, 6(5): 376-385. [5] Polge C, Heng AE, Jarzaguet M, et al. Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1.[J]. Faseb J, 2011, 25(11): 3790-3802. [6] 吴梦佳, 唐成林, 黄思琴, 等. 电针对失去神经大鼠腓肠肌中叉头蛋白转录因子3A、肌萎缩F-box蛋白及成肌分化抗原的影响[J]. 中国康复理论与实践, 2018, DOI: 10.13702/j.1000-0607.171015. [7] Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells[J].Cell Metab, 2007, 6(6): 472-483. [8] 王红磊, 肖 奕, 武 力, 等. miR-449a对人乳腺癌细胞MCF-7增殖及迁移能力的影响[J]. 中国应用生理学杂志, 2017, 33(6): 508-513. [9] 赵永才, 付近梅, 高炳宏. 不同强度运动训练对心肌凋亡途径微小RNA及其靶蛋白的影响[J]. 中国应用生理学杂志, 2018, 34(1): 93-96. [10]Wada S, Kato Y, Okutsu M, et al. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy[J]. J Biol Chem, 2011, 286(44): 38456-38465. [11]周俊明, 徐晓君, 张沈煜, 等. 臂丛神经损伤规范化康复治疗的临床研究[J]. 中国康复医学杂志, 2011, 26(2): 124-127. [12]门志涛, 张 宏. 中医推拿舒筋作用机制研究[J]. 按摩与导引, 2008(3): 10-13. [13]吴 凡, 张 蓓, 郑慧敏, 等. 推拿治疗坐骨神经损伤大鼠行为学研究[J]. 成都中医药大学学报, 2013, 36(1): 41-43. [14]翁 军, 郭汝宝, 李增图, 等. 推拿手法对家兔失神经支配后骨骼肌IGF-Ⅰ、bFGF、MyoD表达的影响[J]. 中华中医药杂志, 2015, 30(10): 3716-3719. [15]Guttridge DC, Mayo MW, Madrid LV, et al. NF-κB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia[J]. Science, 2000, 289(5488): 2363-2366. [16]Zhang P, Chen X, Fan M. Signaling mechanisms involved in disuse muscle atrophy[J]. Med Hypotheses, 2007, 69(2): 310-321.[17]Clavel S, Coldefy AS, Kurkdjian E, et al. Atrophy-related ubiquitin ligases, atrogin-1 and MuRF1 are up-regulated in aged rat Tibialis Anterior muscle[J]. Mech Ageing Dev, 2006, 127(10): 794-801. [18]Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy[J]. Science, 2001, 294(5547): 1704-1708. [19]Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy[J]. Proc Natl Acad Sci U S A, 2001, 98(25): 14440-14445. [20]Sacheck JM, Hyatt JP, Raffaello A, et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases[J]. Faseb J, 2007, 21(1): 140-155. [21]王鹏飞, 梁炳生, 彭春辉. FoxO3a及MAFbx在大鼠失神经腓肠肌细胞中的表达变化[J]. 中国医疗前沿, 2012, 7(4): 19-21. [22]Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors[J]. Mol Cell, 2004, 14(3): 395-403. [23]Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo[J]. Cell Metab, 2007, 6(6): 458-471. [24]Trendelenburg AU, Meyer A, Rohner D, et al. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size[J]. Am J Physiol Cell Physiol, 2009, 296(6): 1258-1270. [25]Léger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy[J]. J Physiol, 2006, 576(3): 923-933. [26]Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006, 38(2): 228-233. [27]Kim HK, Yong SL, Sivaprasad U, et al. Muscle-specific microRNA miR-206 promotes muscle differentiation[J]. J Cell Biol, 2006, 174(5): 677-687. [28]Soares RJ, Cagnin S, Chemello F, et al. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions[J]. J Biol Chem, 2014, 289(32): 21909-21925. [29]Hsieh CH, Jeng SF, Wu CJ, et al. Altered expression of the microRNAS and their potential target genes in the soleus muscle after peripheral denervation and reinnervation in rats[J]. J Trauma Acute Care Surg, 2011, 70(2): 472-480. |