[1] Gooch JL, Barnes JL, Garcia S, et al. Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation[J]. Am J Physiol Renal Physiol, 2003, 284(1):F144-154. [2] Chen S, Hong SW, Iglesias-dela Cruz MC, et al. The key role of the transforming growth factor-β system in the pathogenesis of diabetic nephropathy[J]. Ren Fail, 2001, 23(3-4):471-481. [3] 曾聪聪, 刘曦, 刘网网, 等. 姜黄素衍生物 B06 对 2 型糖尿病大鼠肾脏的保护作用[J]. 中国应用生理学杂志, 2015, 31(1):38-42. [4] 应丽丽, 倪瑾瑶, 李慧敏, 等. 姜黄素类似物 L6H4 对 2 型糖尿病大鼠心肌的保护作用[J]. 中国病理生理杂志, 2016, 32(1):27-32. [5] 陈涵斌, 马骏, 李慧敏, 等. 邻苯二甲酸酯染毒哺乳期母鼠对雄性仔鼠睾丸Leydig细胞形态及功能的影响[J]. 中国应用生理学杂志, 2015, 31(2):97-101. [6] 李旭升, 陈国荣, 李剑敏, 等. 银杏叶提取物对糖尿病大鼠心肌损伤的防护作用. 中国应用生理学杂志, 2005, 21(2):176-178. [7] Schaan BDA, Lacchini S, Bertoluci MC, et al. Increased renal GLUT1 abundance and urinary TGF-β1 in streptozotocin-induced diabetic rats:implications for the development of nephropathy complicating diabetes[J]. Horm Metab Res, 2001, 33(11):664-669. [8] 吕佳璇, 李月红. 糖尿病肾病的研究进展[J]. 临床内科杂志, 2016, 33(5):296-299. [9] Houlihan CA, Akdeniz A, Tsalamandris C, et al. Urinary transforming growth factor-β excretion in patients with hypertension, type 2 diabetes, and elevated albumin excretion rate effects of angiotensin receptor blockade and sodium restriction[J]. Diabetes Care, 2002, 25(6):1072-1077. [10] Wang JJ, Zhang SX, Mott R, et al. Salutary effect of pigment epithelium derived factor in diabetic nephropathy evidence for antifibrogenic activities[J]. Diabetes, 2006, 55(6):1678-1685. [11] Cooper ME. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy[J]. Diabetologia, 2001, 44(11):1957-1972. [12] Sakharova OV, Taal MW, Brenner BM. Pathogenesis of diabetic nephropathy:focus on transforming growth factor-β and connective tissue growth factor[J]. Curr Opin Nephrol Hypertens, 2001, 10(6):727-738. [13] Akai Y, Sato H, Ozaki H, et al. Association of transforming growth factor-β1 T29C polymorphism with the progression of diabetic nephropathy[J]. Am JKidney Dis, 2001, 38(4):S182-185. [14] Basile DP. Transforming growth factor-β as a target for treatment in diabetic nephropathy[J]. Am J kidney dis, 2001, 38(4):887-890. [15] 宋成军, 付秀美, 李健, 等. 丝胶对糖尿病肾病大鼠肾脏 TGF-β-1/Smad3 信号通路的作用[J]. 中国应用生理学杂志, 2011, 27(1):102-105. [16] Wahab N A, Yevdokimova N, Weston BS, et al. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy[J]. Biochem J, 2001, 359(1):77-87. [17] Hill C, Flyvbjerg A, Rasch R, et al. Transforming growth factor-beta2 antibody attenuates fibrosis in the experimental diabetic rat kidney[J]. J Endocrinol, 2001, 170(3):647-651. [18] Chen S, Hong SW, Iglesias-dela Cruz MC, et al. The key role of the transforming growth factor-β system in the pathogenesis of diabetic nephropathy[J]. Ren Fail, 2001, 23(3-4):471-481. [19] 杨玉霞. 糖尿病肾病药物治疗进展[J]. 医药卫生(引文版), 2016, (2):00023-00024. [20] 胡竞予. 黄芪联合缬沙坦治疗早期糖尿病肾病的临床观察[J]. 实用糖尿病的杂志, 2010, 6(5):41-42. [21] 王振富, 钟灵. 姜黄素对大鼠糖尿病防治作用的实验研究[J]. 中国应用生理学杂志, 2014, 30(1):68-69. [22] 曹红, 李军, 李广明, 等. 姜黄素对沙土鼠脑缺血/再灌注损伤的海马 CA1 区细胞凋亡和即早基因 c-fos, c-jun, NF-κB 表达变化的关系[J]. 中国应用生理学杂志, 2007, 23(2):184-188. [23] Wu J, Li J, Cai Y, et al. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents[J]. J Med Chem, 2011, 54:8110-8123.(上接第10页) [15] Wu WH, Hu CP, Chen XP, et al. MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension[J]. Am J Hypertens, 2011, 24(10):1087-1093. [16] Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J]. Circ Res, 2007, 100(11):1579-1588. [17] Liu X, Cheng Y, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia[J]. Circ Res, 2009, 104(4):476-487. |