[1] Goyal BR, Mehta AA. Diabetic cardiomyopathy:pathophysiological mechanisms and cardiac dysfuntion[J]. Hum Exp Toxicol, 2013, 32(6):571-590. [2] Zhuo C, Jiang R, Lin X, et al. LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy[J]. Oncotarget, 2017, 8(1):1429-1437. [3] Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy[J]. Diabetologia, 2014, 57(4):660-671. [4] Stoclet JC, Chataigneau T, Ndiaye M, et al. Vascular protection by dietary polyphenols[J]. Eur J Pharmacol, 2004, 500(1-3):299-313. [5] Liping Meng, Fang Peng, Hui Lin, et al. Polypeptides and polyphenols in Chinese yellow wine inhibitatherosclerosis in LDLR knockout mice[J]. Int J Clin Exp Pathol, 2016, 9(9):9077-9085. [6] 杨锐, 贾强, 刘小粉, 等. 硫化氢对大鼠糖尿病心肌病氧化应激及内质网应激的影响[J]. 中国应用生理学杂志, 2016, 33(01):8-12. [7] Zhou X, Feng Y, Zhan Z, et al. Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model[J]. J Biol Chem, 2014, 289(42):28827-28834. [8] Miki T, Yuda S, Kouzu H, et al. Diabetic cardiomyopathy:pathophysiology and clinical features[J]. Heart Fail Rev, 2013, 18(2):149-166. [9] 贾振, 孙建, 李鸿珠, 等. 钙敏感受体对大鼠糖尿病性心肌病的影响[J]. 中国应用生理学杂志, 2015, 32(1):35-37. [10] Roslan J, Giribabu N, Karim K, et al. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats[J]. Biomed Pharmacother, 2016, 86:570-582. [11] Faria A, Persaud SJ. Cardiac oxidative stress in diabetes:Mechanisms and therapeutic potential[J]. Pharmacol Ther, 2017, 172:50-62. [12] Leung M, Wong VW, Heritier S, et al. Rationale and design of a randomized trial on the impact of aldosterone antagonism on cardiac structure and function in diabetic cardiomyopathy[J]. Cardiovasc Diabetol, 2013, 12:139. [13] Battiprolu PK, Gillette TG, Wang ZV, et al. Diabetic Cardiomyopathy:Mechanisms and Therapeutic Targets[J]. Drug Discov Today Dis Mech, 2010, 7(2):e135-143. [14] Sulaiman M, Matta MJ, Sunderesan NR, et al. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2010, 298(3):H833-843. [15] Wang H, Yang YJ, Qian HY, et al. Resveratrol in cardiovascular disease:what is known from current research[J]. Heart Fail Rev, 2012, 17(3):437-448. [16] Varga ZV, Giricz Z, Liaudet L, et al. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy[J]. Biochim Biophys Acta, 2015, 1852(2):232-242. [17] Giacco F, Brownlee M. Oxidative stress and diabetic complications[J]. Circ Res, 2010, 107(9):1058-1070. [18] Tschope C, Walther T, Escher F, et al. Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy[J]. FASEB J, 2005, 19(14):2057-2059. [19] Rajesh M, Mukhopadhyay P, Batkai S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy[J]. J Am Coll Cardiol, 2010, 56(25):2115-2125. [20] Huang Z, Zhuang X, Xie C, et al. Exogenous Hydrogen Sulfide Attenuates High Glucose-Induced Cardiotoxicity by Inhibiting NLRP3 Inflammasome Activation by Suppressing TLR4/NF-kappaB Pathway in H9c2 Cells[J]. Cell Physiol Biochem, 2016, 40(6):1578-1590. [21] Li CJ, Zhang QM, Li MZ, et al. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy[J]. Chin Med J (Engl), 2009, 122(21):2580-2586. |